Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.
Image 1
Cast of a partial Kimberella fossil.
Kimberella is an extinct genus of bilaterian known only from rocks of the Ediacaran period. The slug-like organism fed by scratching the microbial surface on which it dwelt in a manner similar to the gastropods, although its affinity with this group is contentious.
Specimens were first found in Australia's Ediacara Hills, but recent research has concentrated on the numerous finds near the White Sea in Russia, which cover an interval of time from 555 to 558 million years ago. As with many fossils from this time, its evolutionary relationships to other organisms are hotly debated. Paleontologists initially classified Kimberella as a type of Cubozoan, but, since 1997, features of its anatomy and its association with scratch marks resembling those made by a radula have been interpreted as signs that it may have been a mollusc. Although some paleontologists dispute its classification as a mollusc, it is generally accepted as being at least a bilaterian. (Full article...)
Orcas are apex predators with a diverse diet. Individual populations often specialize in particular types of prey. This includes a variety of fish, sharks, rays, and marine mammals such as seals and other dolphins and whales. They are highly social; some populations are composed of highly stable matrilineal family groups (pods). Their sophisticated hunting techniques and vocal behaviors, often specific to a particular group and passed along from generation to generation, are considered to be manifestations of animal culture. (Full article...)
Sea urchins or urchins (/ˈɜːrtʃɪnz/) are typically spiny, globular animals, echinoderms in the class Echinoidea. About 950 species live on the seabed, inhabiting all oceans and depth zones from the intertidal to 5,000 metres (16,000 ft; 2,700 fathoms). Their tests (hard shells) are round and spiny, typically from 3 to 10 cm (1 to 4 in) across. Sea urchins move slowly, crawling with their tube feet, and sometimes pushing themselves with their spines. They feed primarily on algae but also eat slow-moving or sessile animals. Their predators include sharks, sea otters, starfish, wolf eels, and triggerfish.
Like all echinoderms, adult sea urchins have fivefold symmetry with their pluteus larvae featuring bilateral (mirror) symmetry; The latter indicates that they belong to the Bilateria, along with chordates, arthropods, annelids and molluscs. Sea urchins are found in every ocean and in every climate, from the tropics to the polar regions, and inhabit marine benthic (sea bed) habitats, from rocky shores to hadal zone depths. The fossil record of the Echinoids dates from the Ordovician period, some 450 million years ago. The closest echinoderm relatives of the sea urchin are the sea cucumbers (Holothuroidea), which like them are deuterostomes, a clade that includes the chordates. (Sand dollars are a separate order in the sea urchin class Echinoidea.) (Full article...)
C. maenas is a widespread invasive species, listed among the 100 of the World's Worst Invasive Alien Species. It is native to the north-east Atlantic Ocean and Baltic Sea, but has colonised similar habitats in Australia, South Africa, South America and both Atlantic and Pacific coasts of North America. It grows to a carapace width of 90 mm (3+1⁄2 in), and feeds on a variety of mollusks, worms, and small crustaceans, affecting a number of fisheries. Its successful dispersal has occurred by a variety of mechanisms, such as on ships' hulls, sea planes, packing materials, and bivalves moved for aquaculture. (Full article...)
A coral "group" is a colony of very many genetically identical polyps. Each polyp is a sac-like animal typically only a few millimeters in diameter and a few centimeters in height. A set of tentacles surround a central mouth opening. Each polyp excretes an exoskeleton near the base. Over many generations, the colony thus creates a skeleton characteristic of the species which can measure up to several meters in size. Individual colonies grow by asexual reproduction of polyps. Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously overnight, often around a full moon. Fertilized eggs form planulae, a mobile early form of the coral polyp which, when mature, settles to form a new colony. (Full article...)
Image 6
Chrysomallon squamiferum from Longqi. Scale bar is 1 cm
Chrysomallon squamiferum, commonly known as the scaly-foot gastropod, scaly-foot snail, sea pangolin, or volcano snail is a species of deep-sea hydrothermal-ventsnail, a marine gastropodmollusc in the family Peltospiridae. This vent-endemic gastropod is known only from deep-sea hydrothermal vents in the Indian Ocean, where it has been found at depths of about 2,400–2,900 m (1.5–1.8 mi). C. squamiferum differs greatly from other deep-sea gastropods, even the closely related neomphalines. In 2019, it was declared endangered on the IUCN Red List, the first species to be listed as such due to risks from deep-sea mining of its vent habitat.
The shell is of a unique construction, with three layers; the outer layer consists of iron sulphides, the middle layer is equivalent to the organic periostracum found in other gastropods, and the innermost layer is made of aragonite. The foot is also unusual, being armored at the sides with iron-mineralised sclerites. (Full article...)
Acamptonectes is a genus of ophthalmosauridichthyosaurs, a type of dolphin-like marine reptiles, that lived during the Early Cretaceous around 130 million years ago. The first specimen, a partial adult skeleton, was discovered in Speeton, England, in 1958, but was not formally described until 2012 by Valentin Fischer and colleagues. They also recognised a partial subadult skeleton belonging to the genus from Cremlingen, Germany, and specimens from other localities in England. The genus contains the single speciesAcamptonectes densus; the generic name means "rigid swimmer" and the specific name means "compact" or "tightly packed".
The generic name refers to unusual adaptations in the body of Acamptonectes that made its trunk rigid, including tightly fitting bones in the occiput (back and lower part of the skull) and interlocking vertebral centra ("bodies" of the vertebrae), which were likely adaptations that enabled it to swim at high speeds with a tuna-like form of locomotion. Other distinguishing characteristics include an extremely slender snout and unique ridges on the basioccipital bone of the braincase. As an ichthyosaur, Acamptonectes had large eye sockets and a tail fluke. Acamptonectes was similar in morphology to the related but earlier ophthalmosaurinesOphthalmosaurus and Mollesaurus. (Full article...)
Image 8
The dusky dolphin (Lagenorhynchus obscurus) is a dolphin found in coastal waters in the Southern Hemisphere. Its specific epithet is Latin for "dark" or "dim". It is very closely genetically related to the Pacific white-sided dolphin, but current scientific consensus holds they are distinct species. The dolphin's range is patchy, with major populations around South America, southwestern Africa, New Zealand, and various oceanic islands, with some sightings around southern Australia and Tasmania. The dusky dolphin prefers cool currents and inshore waters, but can also be found offshore. It feeds on a variety of fish and squid species and has flexible hunting tactics. The dusky dolphin is known for its remarkable acrobatics, having a number of aerial behaviours. The status of the dolphin is unknown, but it has been commonly caught in gill nets. (Full article...)
Marine mammal adaptation to an aquatic lifestyle varies considerably between species. Both cetaceans and sirenians are fully aquatic and therefore are obligate water dwellers. Pinnipeds are semiaquatic; they spend the majority of their time in the water but need to return to land for important activities such as mating, breeding and molting. Sea otters tend to live in kelp forests and estuaries. In contrast, the polar bear is mostly terrestrial and only go into the water on occasions of necessity, and are thus much less adapted to aquatic living. The diets of marine mammals vary considerably as well; some eat zooplankton, others eat fish, squid, shellfish, or seagrass, and a few eat other mammals. While the number of marine mammals is small compared to those found on land, their roles in various ecosystems are large, especially concerning the maintenance of marine ecosystems, through processes including the regulation of prey populations. This role in maintaining ecosystems makes them of particular concern as 23% of marine mammal species are currently threatened. (Full article...)
Archelon is an extinct marine turtle from the Late Cretaceous, and is the largest turtle ever to have been documented, with the biggest specimen measuring 4.6 m (15 ft) from head to tail and 2.2–3.2 t (2.4–3.5 short tons) in body mass. It is known only from the Pierre Shale and has one species, A. ischyros. In the past, the genus also contained A. marshii and A. copei, though these have been reassigned to Protostega and Kansastega, respectively. The genus was named in 1895 by American paleontologist George Reber Wieland based on a skeleton from South Dakota, who placed it into the extinct familyProtostegidae. The leatherback sea turtle (Dermochelys coriacea) was once thought to be its closest living relative, but now, Protostegidae is thought to be a completely separate lineage from any living sea turtle.
Archelon had a leathery carapace instead of the hard shell seen in most sea turtles. The carapace may have featured a row of small ridges, each peaking at 2.5 or 5 cm (1 or 2 in) in height. It had an especially hooked beak and its jaws were adept at crushing, so it probably ate hard-shelled crustaceans, mollusks, and possibly even sponges, while slowly moving over the seafloor. It also potentially consumed other animals, whilst swimming closer to the surface, like jellyfish, squid, or nautiloids. However, its beak may have been better-adapted for shearing flesh, with fish being another possible prey choice. With its large and strong foreflippers, Archelon was likely able to produce powerful strokes necessary for open-ocean travel and, if need be, escape from fellow marine predators. It inhabited the northern Western Interior Seaway, a mild to cool temperate area, dominated by plesiosaurs, hesperornithiform seabirds, and mosasaurs. It may have gone extinct due to the shrinking of the seaway, increased infant mortality rates (in the sea), higher instances of egg and hatchling predation (on land), and a rapidly cooling climate. (Full article...)
Image 1Cycling of marine phytoplankton. Phytoplankton live in the photic zone of the ocean, where photosynthesis is possible. During photosynthesis, they assimilate carbon dioxide and release oxygen. If solar radiation is too high, phytoplankton may fall victim to photodegradation. For growth, phytoplankton cells depend on nutrients, which enter the ocean by rivers, continental weathering, and glacial ice meltwater on the poles. Phytoplankton release dissolved organic carbon (DOC) into the ocean. Since phytoplankton are the basis of marine food webs, they serve as prey for zooplankton, fish larvae and other heterotrophic organisms. They can also be degraded by bacteria or by viral lysis. Although some phytoplankton cells, such as dinoflagellates, are able to migrate vertically, they are still incapable of actively moving against currents, so they slowly sink and ultimately fertilize the seafloor with dead cells and detritus. (from Marine food web)
Image 10Schematic representation of the changes in abundance between trophic groups in a temperate rocky reef ecosystem. (a) Interactions at equilibrium. (b) Trophic cascade following disturbance. In this case, the otter is the dominant predator and the macroalgae are kelp. Arrows with positive (green, +) signs indicate positive effects on abundance while those with negative (red, -) indicate negative effects on abundance. The size of the bubbles represents the change in population abundance and associated altered interaction strength following disturbance. (from Marine food web)
Image 12Cnidarians are the simplest animals with cells organised into tissues. Yet the starlet sea anemone contains the same genes as those that form the vertebrate head. (from Marine invertebrates)
Solar radiation can have positive (+) or negative (−) effects resulting in increases or decreases in the heterotrophic activity of bacterioplankton. (from Marine prokaryotes)
Image 15Waves and currents shape the intertidal shoreline, eroding the softer rocks and transporting and grading loose particles into shingles, sand or mud (from Marine habitat)
Image 16The pelagic food web, showing the central involvement of marine microorganisms in how the ocean imports nutrients from and then exports them back to the atmosphere and ocean floor (from Marine food web)
Mycoloop links between phytoplankton and zooplankton
Chytrid‐mediated trophic links between phytoplankton and zooplankton (mycoloop). While small phytoplankton species can be grazed upon by zooplankton, large phytoplankton species constitute poorly edible or even inedible prey. Chytrid infections on large phytoplankton can induce changes in palatability, as a result of host aggregation (reduced edibility) or mechanistic fragmentation of cells or filaments (increased palatability). First, chytrid parasites extract and repack nutrients and energy from their hosts in form of readily edible zoospores. Second, infected and fragmented hosts including attached sporangia can also be ingested by grazers (i.e. concomitant predation). (from Marine fungi)
Image 22Oceanic pelagic food web showing energy flow from micronekton to top predators. Line thickness is scaled to the proportion in the diet. (from Marine food web)
Model of the energy generating mechanism in marine bacteria
(1) When sunlight strikes a rhodopsin molecule (2) it changes its configuration so a proton is expelled from the cell (3) the chemical potential causes the proton to flow back to the cell (4) thus generating energy (5) in the form of adenosine triphosphate. (from Marine prokaryotes)
Image 28Sea ice food web and the microbial loop. AAnP = aerobic anaerobic phototroph, DOC = dissolved organic carbon, DOM = dissolved organic matter, POC = particulate organic carbon, PR = proteorhodopsins. (from Marine food web)
Image 29Biomass pyramids. Compared to terrestrial biomass pyramids, aquatic pyramids are generally inverted at the base. (from Marine food web)
Image 30Antarctic marine food web. Potter Cove 2018. Vertical position indicates trophic level and node widths are proportional to total degree (in and out). Node colors represent functional groups. (from Marine food web)
Image 37Only 29 percent of the world surface is land. The rest is ocean, home to the marine habitats. The oceans are nearly four kilometres deep on average and are fringed with coastlines that run for nearly 380,000 kilometres.
Image 39An in situ perspective of a deep pelagic food web derived from ROV-based observations of feeding, as represented by 20 broad taxonomic groupings. The linkages between predator to prey are coloured according to predator group origin, and loops indicate within-group feeding. The thickness of the lines or edges connecting food web components is scaled to the log of the number of unique ROV feeding observations across the years 1991–2016 between the two groups of animals. The different groups have eight colour-coded types according to main animal types as indicated by the legend and defined here: red, cephalopods; orange, crustaceans; light green, fish; dark green, medusa; purple, siphonophores; blue, ctenophores and grey, all other animals. In this plot, the vertical axis does not correspond to trophic level, because this metric is not readily estimated for all members. (from Marine food web)
Image 41Conference events, such as the events hosted by the United Nations, help to bring together many stakeholders for awareness and action. (from Marine conservation)
Image 42Elevation-area graph showing the proportion of land area at given heights and the proportion of ocean area at given depths (from Marine habitat)
Image 43
The global continental shelf, highlighted in light green, defines the extent of marine coastal habitats, and occupies 5% of the total world area
Image 45The distribution of anthropogenic stressors faced by marine species threatened with extinction in various marine regions of the world. Numbers in the pie charts indicate the percentage contribution of an anthropogenic stressors' impact in a specific marine region. (from Marine food web)
Image 47Cryptic interactions in the marine food web. Red: mixotrophy; green: ontogenetic and species differences; purple: microbial cross‐feeding; orange: auxotrophy; blue: cellular carbon partitioning. (from Marine food web)
Image 48Chytrid parasites of marine diatoms. (A) Chytrid sporangia on Pleurosigma sp. The white arrow indicates the operculate discharge pore. (B) Rhizoids (white arrow) extending into diatom host. (C) Chlorophyll aggregates localized to infection sites (white arrows). (D and E) Single hosts bearing multiple zoosporangia at different stages of development. The white arrow in panel E highlights branching rhizoids. (F) Endobiotic chytrid-like sporangia within diatom frustule. Bars = 10 μm. (from Marine fungi)
Image 49Ocean surface chlorophyll concentrations in October 2019. The concentration of chlorophyll can be used as a proxy to indicate how many phytoplankton are present. Thus on this global map green indicates where a lot of phytoplankton are present, while blue indicates where few phytoplankton are present. – NASA Earth Observatory 2019. (from Marine food web)
Image 50Reconstruction of an ammonite, a highly successful early cephalopod that first appeared in the Devonian (about 400 mya). They became extinct during the same extinction event that killed the land dinosaurs (about 66 mya). (from Marine invertebrates)
Image 51A protected sea turtle area that warns of fines and imprisonment on a beach in Miami, Florida. (from Marine conservation)
Image 53Ernst Haeckel's 96th plate, showing some marine invertebrates. Marine invertebrates have a large variety of body plans, which are currently categorised into over 30 phyla. (from Marine invertebrates)
Image 54
Diagram of a mycoloop (fungus loop)
Parasitic chytrids can transfer material from large inedible phytoplankton to zooplankton. Chytrids zoospores are excellent food for zooplankton in terms of size (2–5 μm in diameter), shape, nutritional quality (rich in polyunsaturated fatty acids and cholesterols). Large colonies of host phytoplankton may also be fragmented by chytrid infections and become edible to zooplankton. (from Marine fungi)
Image 55A microbial mat encrusted with iron oxide on the flank of a seamount can harbour microbial communities dominated by the iron-oxidizing Zetaproteobacteria (from Marine prokaryotes)
Image 57This algae bloom occupies sunlit epipelagic waters off the southern coast of England. The algae are maybe feeding on nutrients from land runoff or upwellings at the edge of the continental shelf. (from Marine habitat)
Image 63Some lobe-finned fishes, like the extinct Tiktaalik, developed limb-like fins that could take them onto land (from Marine vertebrate)
Image 64A 2016 metagenomic representation of the tree of life using ribosomal protein sequences. The tree includes 92 named bacterial phyla, 26 archaeal phyla and five eukaryotic supergroups. Major lineages are assigned arbitrary colours and named in italics with well-characterized lineage names. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots. (from Marine prokaryotes)
Image 65Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes (from Marine fungi)
Image 66On average there are more than one million microbial cells in every drop of seawater, and their collective metabolisms not only recycle nutrients that can then be used by larger organisms but also catalyze key chemical transformations that maintain Earth's habitability. (from Marine food web)
Different bacteria shapes (cocci, rods and spirochetes) and their sizes compared with the width of a human hair. A few bacteria are comma-shaped (vibrio). Archaea have similar shapes, though the archaeon Haloquadratum is flat and square.
The unit μm is a measurement of length, the micrometer, equal to 1/1,000 of a millimeter
Image 77In the open ocean, sunlit surface epipelagic waters get enough light for photosynthesis, but there are often not enough nutrients. As a result, large areas contain little life apart from migrating animals. (from Marine habitat)
Image 79Some representative ocean animal life (not drawn to scale) within their approximate depth-defined ecological habitats. Marine microorganisms exist on the surfaces and within the tissues and organs of the diverse life inhabiting the ocean, across all ocean habitats. (from Marine habitat)
Image 88Estuaries occur when rivers flow into a coastal bay or inlet. They are nutrient rich and have a transition zone which moves from freshwater to saltwater. (from Marine habitat)
Image 90Archaea were initially viewed as extremophiles living in harsh environments, such as the yellow archaea pictured here in a hot spring, but they have since been found in a much broader range of habitats. (from Marine prokaryotes)
Image 93Scanning electron micrograph of a strain of Roseobacter, a widespread and important genus of marine bacteria. For scale, the membrane pore size is 0.2μm in diameter. (from Marine prokaryotes)
Image 96The Ocean Cleanup is one of many organizations working toward marine conservation such at this interceptor vessel that prevents plastic from entering the ocean. (from Marine conservation)
Image 97Diagram above contains clickable links
Image 98Ocean or marine biomass, in a reversal of terrestrial biomass, can increase at higher trophic levels. (from Marine food web)
Image 99640 μm microplastic found in the deep sea amphipod Eurythenes plasticus (from Marine habitat)
Image 102The deep sea amphipodEurythenes plasticus, named after microplastics found in its body, demonstrating plastic pollution affects marine habitats even 6000m below sea level. (from Marine habitat)
Image 104Phylogenetic tree representing bacterial OTUs from clone libraries and next-generation sequencing. OTUs from next-generation sequencing are displayed if the OTU contained more than two sequences in the unrarefied OTU table (3626 OTUs). (from Marine prokaryotes)
Image 105Halfbeak as larvae are one of the organisms adapted to the unique properties of the microlayer (from Marine habitat)
Image 107Food web structure in the euphotic zone. The linear food chain large phytoplankton-herbivore-predator (on the left with red arrow connections) has fewer levels than one with small phytoplankton at the base. The microbial loop refers to the flow from the dissolved organic carbon (DOC) via heterotrophic bacteria (Het. Bac.) and microzooplankton to predatory zooplankton (on the right with black solid arrows). Viruses play a major role in the mortality of phytoplankton and heterotrophic bacteria, and recycle organic carbon back to the DOC pool. Other sources of dissolved organic carbon (also dashed black arrows) includes exudation, sloppy feeding, etc. Particulate detritus pools and fluxes are not shown for simplicity. (from Marine food web)
Image 108Anthropogenic stressors to marine species threatened with extinction (from Marine food web)
Image 111Sandy shores provide shifting homes to many species (from Marine habitat)
Image 112Common-enemy graph of Antarctic food web. Potter Cove 2018. Nodes represent basal species and links indirect interactions (shared predators). Node and link widths are proportional to number of shared predators. Node colors represent functional groups. (from Marine food web)
Image 116Conceptual diagram of faunal community structure and food-web patterns along fluid-flux gradients within Guaymas seep and vent ecosystems. (from Marine food web)
Estimates of microbial species counts in the three domains of life
Bacteria are the oldest and most biodiverse group, followed by Archaea and Fungi (the most recent groups). In 1998, before awareness of the extent of microbial life had gotten underway, Robert M. May estimated there were 3 million species of living organisms on the planet. But in 2016, Locey and Lennon estimated the number of microorganism species could be as high as 1 trillion. (from Marine prokaryotes)
Image 124Whales were close to extinction until legislation was put in place. (from Marine conservation)
Image 16Ecosystem services delivered by epibenthicbivalve reefs. Reefs provide coastal protection through erosion control and shoreline stabilization, and modify the physical landscape by ecosystem engineering, thereby providing habitat for species by facilitative interactions with other habitats such as tidal flat benthic communities, seagrasses and marshes. (from Marine ecosystem)
... A shark can sense a turtle, octopus or other prey from up to 20m away.
... the Beluga Whale's milkfat is so high, the calf gains up to 2 kilograms per day on the diet. It is so fatty that the colour is green.
... The ear bone called the hammer (malleus) in cetaceans is fused to the walls of the bone cavity where the ear bones are, making hearing in air nearly impossible. Instead sound is transmitted through their jaws and skull bones.
... Sharks never stop growing; when they reach adulthood, they just slow down.
... all cetaceans have a blubber layer — a layer of fat under the skin. In most dolphins, this layer is about one quarter to one third of the total body weight, but in southern right whales nearly half of its weight (up to 50 tons) will be blubber.
The Green Sea Turtle (Chelonia mydas) is a large sea turtle, the only member of the genus Chelonia (Brongniart, 1800). This turtle grows to 1-1.5 m in length, and can weigh 200 kg, making it the largest of the hard-shelled turtles. Its distribution extends throughout tropical, subtropical and some warmer temperate waters. Females lay their eggs on traditional nesting beaches, and the turtles often bask in the sand to warm their ectothermic bodies, but otherwise this species is entirely marine.