The sperm whale is a pelagicmammal with a worldwide range, and will migrate seasonally for feeding and breeding. Females and young males live together in groups, while mature males (bulls) live solitary lives outside of the mating season. The females cooperate to protect and nurse their young. Females give birth every four to twenty years, and care for the calves for more than a decade. A mature, healthy sperm whale has no natural predators, although calves and weakened adults are sometimes killed by pods of killer whales (orcas). (Full article...)
Sea snakes, or coral reef snakes, are elapid snakes that inhabit marine environments for most or all of their lives. They belong to two subfamilies, Hydrophiinae and Laticaudinae. Hydrophiinae also includes Australasian terrestrial snakes, whereas Laticaudinae only includes the sea kraits (Laticauda), of which three species are found exclusively in freshwater. If these three freshwater species are excluded, there are 69 species of sea snakes divided among seven genera.
Most sea snakes are venomous, except the genus Emydocephalus, which feeds almost exclusively on fish eggs. Sea snakes are extensively adapted to a fully aquatic life and are unable to move on land, except for the sea kraits, which have limited land movement. They are found in warm coastal waters from the Indian Ocean to the Pacific and are closely related to venomous terrestrial snakes in Australia. (Full article...)
Image 3
Southern right whale breaching
Right whales are three species of large baleen whales of the genusEubalaena: the North Atlantic right whale (E. glacialis), the North Pacific right whale (E. japonica) and the Southern right whale (E. australis). They are classified in the family Balaenidae with the bowhead whale. Right whales have rotund bodies with arching rostrums, V-shaped blowholes and dark gray or black skin. The most distinguishing feature of a right whale is the rough patches of skin on its head, which appear white due to parasitism by whale lice. Right whales are typically 13–17 m (43–56 ft) long and weigh up to 100 short tons (91 t; 89 long tons) or more.
All three species are migratory, moving seasonally to feed or give birth. The warm equatorial waters form a barrier that isolates the northern and southern species from one another although the southern species, at least, has been known to cross the equator. In the Northern Hemisphere, right whales tend to avoid open waters and stay close to peninsulas and bays and on continental shelves, as these areas offer greater shelter and an abundance of their preferred foods. In the Southern Hemisphere, right whales feed far offshore in summer, but a large portion of the population occur in near-shore waters in winter. Right whales feed mainly on copepods but also consume krill and pteropods. They may forage the surface, underwater or even the ocean bottom. During courtship, males gather into large groups to compete for a single female, suggesting that sperm competition is an important factor in mating behavior. Gestation tends to last a year, and calves are weaned at eight months old. (Full article...)
Image 4
Main entrance in 2016, featuring the remodeled façade and fiberglass smokestacks of the Hovden Cannery
Early proposals to build a public aquarium in Monterey County were not successful until a group of four marine biologists affiliated with Stanford University revisited the concept in the late 1970s. Monterey Bay Aquarium was built at the site of a defunct sardine cannery and has been recognized for its architectural achievements by the American Institute of Architects. Along with its architecture, the aquarium has won numerous awards for its exhibition of marine life, ocean conservation efforts, and educational programs. (Full article...)
Image 5
Crinoid on the reef of Batu Moncho Island, Indonesia
Crinoids are marine invertebrates that make up the classCrinoidea. Crinoids that remain attached to the sea floor by a stalk in their adult form are commonly called sea lilies, while the unstalked forms, called feather stars or comatulids, are members of the largest crinoid order, Comatulida. Crinoids are echinoderms in the phylumEchinodermata, which also includes the starfish, brittle stars, sea urchins and sea cucumbers. They live in both shallow water and in depths of over 9,000 metres (30,000 ft).
Adult crinoids are characterised by having the mouth located on the upper surface. This is surrounded by feeding arms, and is linked to a U-shaped gut, with the anus being located on the oral disc near the mouth. Although the basic echinoderm pattern of fivefold symmetry can be recognised, in most crinoids the five arms are subdivided into ten or more. These have feathery pinnules and are spread wide to gather planktonic particles from the water. At some stage in their lives, most crinoids have a short stem used to attach themselves to the substrate, but many live attached only as juveniles and become free-swimming as adults. (Full article...)
The sea mink (Neogale macrodon) is a recently extinct species of mink that lived on the eastern coast of North America around the Gulf of Maine on the New England seaboard. It was most closely related to the American mink (Neogale vison), with continuing debate about whether or not the sea mink should be considered a subspecies of the American mink (as Neogale vison macrodon) or a species of its own. The main justification for a separate species designation is the size difference between the two minks, but other distinctions have been made, such as its redder fur. The only known remains are bone fragments unearthed in Native American shell middens. Its actual size is speculative, based largely on tooth remains.
The sea mink was first described in 1903, after its extinction; information regarding its external appearance and habits stem from speculation and from accounts made by fur traders and Native Americans. It may have exhibited behavior similar to the American mink, in that it probably maintained home ranges, was polygynandrous, and had a similar diet, though more seaward-oriented. It was probably found on the New England coast and the Maritime Provinces, though its range may have stretched further south during the last glacial period. Conversely, its range may have been restricted solely to the New England coast, specifically the Gulf of Maine, or just to the nearby islands. The largest of the minks, the sea mink was more desirable to fur traders and became extinct in the late 19th or early 20th century. (Full article...)
Whales are a widely distributed and diverse group of fully aquaticplacentalmarine mammals. As an informal and colloquial grouping, they correspond to large members of the infraorder Cetacea, i.e. all cetaceans apart from dolphins and porpoises. Dolphins and porpoises may be considered whales from a formal, cladistic perspective. Whales, dolphins and porpoises belong to the order Cetartiodactyla, which consists of even-toed ungulates. Their closest non-cetacean living relatives are the hippopotamuses, from which they and other cetaceans diverged about 54 million years ago. The two parvorders of whales, baleen whales (Mysticeti) and toothed whales (Odontoceti), are thought to have had their last common ancestor around 34 million years ago. Mysticetes include four extant (living) families: Balaenopteridae (the rorquals), Balaenidae (right whales), Cetotheriidae (the pygmy right whale), and Eschrichtiidae (the grey whale). Odontocetes include the Monodontidae (belugas and narwhals), Physeteridae (the sperm whale), Kogiidae (the dwarf and pygmy sperm whale), and Ziphiidae (the beaked whales), as well as the six families of dolphins and porpoises which are not considered whales in the informal sense.
Whales are fully aquatic, open-ocean animals: they can feed, mate, give birth, suckle and raise their young at sea. Whales range in size from the 2.6 metres (8.5 ft) and 135 kilograms (298 lb) dwarf sperm whale to the 29.9 metres (98 ft) and 190 tonnes (210 short tons) blue whale, which is the largest known animal that has ever lived. The sperm whale is the largest toothed predator on Earth. Several whale species exhibit sexual dimorphism, in that the females are larger than males. (Full article...)
Image 8
Sei whale mother and calf
The sei whale (/seɪ/SAY, Norwegian:[sæɪ]; Balaenoptera borealis) is a baleen whale. It is one of ten rorqual species, and the third-largest member after the blue and fin whales. It can grow to 19.5 m (64 ft) in length and weigh as much as 28 t (28 long tons; 31 short tons). Two subspecies are recognized: B. b. borealis and B. b. schlegelii. The whale's ventral surface has sporadic markings ranging from light grey to white, and its body is usually dark steel grey in colour. It is among the fastest of all cetaceans, and can reach speeds of up to 50 km/h (31 mph) over short distances.
It inhabits most oceans and adjoining seas, and prefers deep offshore waters. It avoids polar and tropical waters and semi-enclosed bodies of water. The sei whale migrates annually from cool, subpolar waters in summer to temperate, subtropical waters in winter with a lifespan of 70 years. It is a filter feeder, with its diet consisting primarily of copepods, krill, and other zooplankton. It is typically solitary or can be found in groups numbering half a dozen. During the breeding period, a mating pair will remain together. Sei whale vocalizations usually lasts half a second, and occurs at 240–625 hertz. (Full article...)
Archelon is an extinct marine turtle from the Late Cretaceous, and is the largest turtle ever to have been documented, with the biggest specimen measuring 4.6 m (15 ft) from head to tail and 2.2–3.2 t (2.4–3.5 short tons) in body mass. It is known only from the Pierre Shale and has one species, A. ischyros. In the past, the genus also contained A. marshii and A. copei, though these have been reassigned to Protostega and Kansastega, respectively. The genus was named in 1895 by American paleontologist George Reber Wieland based on a skeleton from South Dakota, who placed it into the extinct familyProtostegidae. The leatherback sea turtle (Dermochelys coriacea) was once thought to be its closest living relative, but now, Protostegidae is thought to be a completely separate lineage from any living sea turtle.
Archelon had a leathery carapace instead of the hard shell seen in most sea turtles. The carapace may have featured a row of small ridges, each peaking at 2.5 or 5 cm (1 or 2 in) in height. It had an especially hooked beak and its jaws were adept at crushing, so it probably ate hard-shelled crustaceans, mollusks, and possibly even sponges, while slowly moving over the seafloor. It also potentially consumed other animals, whilst swimming closer to the surface, like jellyfish, squid, or nautiloids. However, its beak may have been better-adapted for shearing flesh, with fish being another possible prey choice. With its large and strong foreflippers, Archelon was likely able to produce powerful strokes necessary for open-ocean travel and, if need be, escape from fellow marine predators. It inhabited the northern Western Interior Seaway, a mild to cool temperate area, dominated by plesiosaurs, hesperornithiform seabirds, and mosasaurs. It may have gone extinct due to the shrinking of the seaway, increased infant mortality rates (in the sea), higher instances of egg and hatchling predation (on land), and a rapidly cooling climate. (Full article...)
Bivalvia (/baɪˈvælviə/) or bivalves, in previous centuries referred to as the Lamellibranchiata and Pelecypoda, is a class of aquaticmolluscs (marine and freshwater) that have laterally compressed soft bodies enclosed by a calcified exoskeleton consisting of a hinged pair of half-shells known as valves. As a group, bivalves have no head and lack some typical molluscan organs such as the radula and the odontophore. Their gills have evolved into ctenidia, specialised organs for feeding and breathing.
Common bivalves include clams, oysters, cockles, mussels, scallops, and numerous other families that live in saltwater, as well as a number of families that live in freshwater. Majority of the class are benthicfilter feeders that bury themselves in sediment, where they are relatively safe from predation. Others lie on the sea floor or attach themselves to rocks or other hard surfaces. Some bivalves, such as scallops and file shells, can swim. Shipworms bore into wood, clay, or stone and live inside these substances. (Full article...)
Coral belongs to the classAnthozoa in the animal phylumCnidaria, which includes sea anemones and jellyfish. Unlike sea anemones, corals secrete hard carbonate exoskeletons that support and protect the coral. Most reefs grow best in warm, shallow, clear, sunny and agitated water. Coral reefs first appeared 485 million years ago, at the dawn of the Early Ordovician, displacing the microbial and sponge reefs of the Cambrian. (Full article...)
Image 2Archaea were initially viewed as extremophiles living in harsh environments, such as the yellow archaea pictured here in a hot spring, but they have since been found in a much broader range of habitats. (from Marine prokaryotes)
Image 5Tidepools on rocky shores make turbulent habitats for many forms of marine life (from Marine habitat)
Image 6
Estimates of microbial species counts in the three domains of life
Bacteria are the oldest and most biodiverse group, followed by Archaea and Fungi (the most recent groups). In 1998, before awareness of the extent of microbial life had gotten underway, Robert M. May estimated there were 3 million species of living organisms on the planet. But in 2016, Locey and Lennon estimated the number of microorganism species could be as high as 1 trillion. (from Marine prokaryotes)
Image 8Conference events, such as the events hosted by the United Nations, help to bring together many stakeholders for awareness and action. (from Marine conservation)
Image 9Reconstruction of an ammonite, a highly successful early cephalopod that first appeared in the Devonian (about 400 mya). They became extinct during the same extinction event that killed the land dinosaurs (about 66 mya). (from Marine invertebrates)
Image 10Ocean or marine biomass, in a reversal of terrestrial biomass, can increase at higher trophic levels. (from Marine food web)
Model of the energy generating mechanism in marine bacteria
(1) When sunlight strikes a rhodopsin molecule (2) it changes its configuration so a proton is expelled from the cell (3) the chemical potential causes the proton to flow back to the cell (4) thus generating energy (5) in the form of adenosine triphosphate. (from Marine prokaryotes)
Image 16Coral reefs provide marine habitats for tube sponges, which in turn become marine habitats for fishes (from Marine habitat)
Image 17Elevation-area graph showing the proportion of land area at given heights and the proportion of ocean area at given depths (from Marine habitat)
Image 19Marine Species Changes in Latitude and Depth in three different ocean regions(1973–2019) (from Marine food web)
Image 20Dickinsonia may be the earliest animal. They appear in the fossil record 571 million to 541 million years ago. (from Marine invertebrates)
Image 21An in situ perspective of a deep pelagic food web derived from ROV-based observations of feeding, as represented by 20 broad taxonomic groupings. The linkages between predator to prey are coloured according to predator group origin, and loops indicate within-group feeding. The thickness of the lines or edges connecting food web components is scaled to the log of the number of unique ROV feeding observations across the years 1991–2016 between the two groups of animals. The different groups have eight colour-coded types according to main animal types as indicated by the legend and defined here: red, cephalopods; orange, crustaceans; light green, fish; dark green, medusa; purple, siphonophores; blue, ctenophores and grey, all other animals. In this plot, the vertical axis does not correspond to trophic level, because this metric is not readily estimated for all members. (from Marine food web)
Image 22Topological positions versus mobility: (A) bottom-up groups (sessile and drifters), (B) groups at the top of the food web. Phyto, phytoplankton; MacroAlga, macroalgae; Proto, pelagic protozoa; Crus, Crustacea; PelBact, pelagic bacteria; Echino, Echinoderms; Amph, Amphipods; HerbFish, herbivorous fish; Zoopl, zooplankton; SuspFeed, suspension feeders; Polych, polychaetes; Mugil, Mugilidae; Gastropod, gastropods; Blenny, omnivorous blennies; Decapod, decapods; Dpunt, Diplodus puntazzo; Macropl, macroplankton; PlFish, planktivorous fish; Cephalopod, cephalopods; Mcarni, macrocarnivorous fish; Pisc, piscivorous fish; Bird, seabirds; InvFeed1 through InvFeed4, benthic invertebrate feeders. (from Marine food web)
Image 23Antarctic marine food web. Potter Cove 2018. Vertical position indicates trophic level and node widths are proportional to total degree (in and out). Node colors represent functional groups. (from Marine food web)
Image 28Common-enemy graph of Antarctic food web. Potter Cove 2018. Nodes represent basal species and links indirect interactions (shared predators). Node and link widths are proportional to number of shared predators. Node colors represent functional groups. (from Marine food web)
Image 30Conceptual diagram of faunal community structure and food-web patterns along fluid-flux gradients within Guaymas seep and vent ecosystems. (from Marine food web)
Image 31The Ocean Cleanup is one of many organizations working toward marine conservation such at this interceptor vessel that prevents plastic from entering the ocean. (from Marine conservation)
Image 32The distribution of anthropogenic stressors faced by marine species threatened with extinction in various marine regions of the world. Numbers in the pie charts indicate the percentage contribution of an anthropogenic stressors' impact in a specific marine region. (from Marine food web)
Image 34640 μm microplastic found in the deep sea amphipod Eurythenes plasticus (from Marine habitat)
Image 35Only 29 percent of the world surface is land. The rest is ocean, home to the marine habitats. The oceans are nearly four kilometres deep on average and are fringed with coastlines that run for nearly 380,000 kilometres.
Image 37Waves and currents shape the intertidal shoreline, eroding the softer rocks and transporting and grading loose particles into shingles, sand or mud (from Marine habitat)
Different bacteria shapes (cocci, rods and spirochetes) and their sizes compared with the width of a human hair. A few bacteria are comma-shaped (vibrio). Archaea have similar shapes, though the archaeon Haloquadratum is flat and square.
The unit μm is a measurement of length, the micrometer, equal to 1/1,000 of a millimeter
Image 40The deep sea amphipodEurythenes plasticus, named after microplastics found in its body, demonstrating plastic pollution affects marine habitats even 6000m below sea level. (from Marine habitat)
Image 41On average there are more than one million microbial cells in every drop of seawater, and their collective metabolisms not only recycle nutrients that can then be used by larger organisms but also catalyze key chemical transformations that maintain Earth's habitability. (from Marine food web)
Image 45Chytrid parasites of marine diatoms. (A) Chytrid sporangia on Pleurosigma sp. The white arrow indicates the operculate discharge pore. (B) Rhizoids (white arrow) extending into diatom host. (C) Chlorophyll aggregates localized to infection sites (white arrows). (D and E) Single hosts bearing multiple zoosporangia at different stages of development. The white arrow in panel E highlights branching rhizoids. (F) Endobiotic chytrid-like sporangia within diatom frustule. Bars = 10 μm. (from Marine fungi)
Solar radiation can have positive (+) or negative (−) effects resulting in increases or decreases in the heterotrophic activity of bacterioplankton. (from Marine prokaryotes)
Mycoloop links between phytoplankton and zooplankton
Chytrid‐mediated trophic links between phytoplankton and zooplankton (mycoloop). While small phytoplankton species can be grazed upon by zooplankton, large phytoplankton species constitute poorly edible or even inedible prey. Chytrid infections on large phytoplankton can induce changes in palatability, as a result of host aggregation (reduced edibility) or mechanistic fragmentation of cells or filaments (increased palatability). First, chytrid parasites extract and repack nutrients and energy from their hosts in form of readily edible zoospores. Second, infected and fragmented hosts including attached sporangia can also be ingested by grazers (i.e. concomitant predation). (from Marine fungi)
Image 57Ocean surface chlorophyll concentrations in October 2019. The concentration of chlorophyll can be used as a proxy to indicate how many phytoplankton are present. Thus on this global map green indicates where a lot of phytoplankton are present, while blue indicates where few phytoplankton are present. – NASA Earth Observatory 2019. (from Marine food web)
Image 58Microplastics found in sediments on the seafloor (from Marine habitat)
Image 59Cycling of marine phytoplankton. Phytoplankton live in the photic zone of the ocean, where photosynthesis is possible. During photosynthesis, they assimilate carbon dioxide and release oxygen. If solar radiation is too high, phytoplankton may fall victim to photodegradation. For growth, phytoplankton cells depend on nutrients, which enter the ocean by rivers, continental weathering, and glacial ice meltwater on the poles. Phytoplankton release dissolved organic carbon (DOC) into the ocean. Since phytoplankton are the basis of marine food webs, they serve as prey for zooplankton, fish larvae and other heterotrophic organisms. They can also be degraded by bacteria or by viral lysis. Although some phytoplankton cells, such as dinoflagellates, are able to migrate vertically, they are still incapable of actively moving against currents, so they slowly sink and ultimately fertilize the seafloor with dead cells and detritus. (from Marine food web)
Image 60Ernst Haeckel's 96th plate, showing some marine invertebrates. Marine invertebrates have a large variety of body plans, which are currently categorised into over 30 phyla. (from Marine invertebrates)
Image 72Schematic representation of the changes in abundance between trophic groups in a temperate rocky reef ecosystem. (a) Interactions at equilibrium. (b) Trophic cascade following disturbance. In this case, the otter is the dominant predator and the macroalgae are kelp. Arrows with positive (green, +) signs indicate positive effects on abundance while those with negative (red, -) indicate negative effects on abundance. The size of the bubbles represents the change in population abundance and associated altered interaction strength following disturbance. (from Marine food web)
Image 73Halfbeak as larvae are one of the organisms adapted to the unique properties of the microlayer (from Marine habitat)
Image 74Sandy shores provide shifting homes to many species (from Marine habitat)
Image 75Biomass pyramids. Compared to terrestrial biomass pyramids, aquatic pyramids are generally inverted at the base. (from Marine food web)
Image 76Phylogenetic and symbiogenetic tree of living organisms, showing a view of the origins of eukaryotes and prokaryotes (from Marine fungi)
Image 77Food web structure in the euphotic zone. The linear food chain large phytoplankton-herbivore-predator (on the left with red arrow connections) has fewer levels than one with small phytoplankton at the base. The microbial loop refers to the flow from the dissolved organic carbon (DOC) via heterotrophic bacteria (Het. Bac.) and microzooplankton to predatory zooplankton (on the right with black solid arrows). Viruses play a major role in the mortality of phytoplankton and heterotrophic bacteria, and recycle organic carbon back to the DOC pool. Other sources of dissolved organic carbon (also dashed black arrows) includes exudation, sloppy feeding, etc. Particulate detritus pools and fluxes are not shown for simplicity. (from Marine food web)
Image 78The pelagic food web, showing the central involvement of marine microorganisms in how the ocean imports nutrients from and then exports them back to the atmosphere and ocean floor (from Marine food web)
Image 80In the open ocean, sunlit surface epipelagic waters get enough light for photosynthesis, but there are often not enough nutrients. As a result, large areas contain little life apart from migrating animals. (from Marine habitat)
Image 81Anthropogenic stressors to marine species threatened with extinction (from Marine food web)
Image 82Estuaries occur when rivers flow into a coastal bay or inlet. They are nutrient rich and have a transition zone which moves from freshwater to saltwater. (from Marine habitat)
Image 86Scanning electron micrograph of a strain of Roseobacter, a widespread and important genus of marine bacteria. For scale, the membrane pore size is 0.2μm in diameter. (from Marine prokaryotes)
Image 87Sea ice food web and the microbial loop. AAnP = aerobic anaerobic phototroph, DOC = dissolved organic carbon, DOM = dissolved organic matter, POC = particulate organic carbon, PR = proteorhodopsins. (from Marine food web)
Image 89A 2016 metagenomic representation of the tree of life using ribosomal protein sequences. The tree includes 92 named bacterial phyla, 26 archaeal phyla and five eukaryotic supergroups. Major lineages are assigned arbitrary colours and named in italics with well-characterized lineage names. Lineages lacking an isolated representative are highlighted with non-italicized names and red dots. (from Marine prokaryotes)
Image 90Some representative ocean animal life (not drawn to scale) within their approximate depth-defined ecological habitats. Marine microorganisms exist on the surfaces and within the tissues and organs of the diverse life inhabiting the ocean, across all ocean habitats. (from Marine habitat)
Image 99Cryptic interactions in the marine food web. Red: mixotrophy; green: ontogenetic and species differences; purple: microbial cross‐feeding; orange: auxotrophy; blue: cellular carbon partitioning. (from Marine food web)
Image 100Phylogenetic tree representing bacterial OTUs from clone libraries and next-generation sequencing. OTUs from next-generation sequencing are displayed if the OTU contained more than two sequences in the unrarefied OTU table (3626 OTUs). (from Marine prokaryotes)
Parasitic chytrids can transfer material from large inedible phytoplankton to zooplankton. Chytrids zoospores are excellent food for zooplankton in terms of size (2–5 μm in diameter), shape, nutritional quality (rich in polyunsaturated fatty acids and cholesterols). Large colonies of host phytoplankton may also be fragmented by chytrid infections and become edible to zooplankton. (from Marine fungi)
Image 110A microbial mat encrusted with iron oxide on the flank of a seamount can harbour microbial communities dominated by the iron-oxidizing Zetaproteobacteria (from Marine prokaryotes)
Image 114Oceanic pelagic food web showing energy flow from micronekton to top predators. Line thickness is scaled to the proportion in the diet. (from Marine food web)
Image 124This algae bloom occupies sunlit epipelagic waters off the southern coast of England. The algae are maybe feeding on nutrients from land runoff or upwellings at the edge of the continental shelf. (from Marine habitat)
Image 125Cnidarians are the simplest animals with cells organised into tissues. Yet the starlet sea anemone contains the same genes as those that form the vertebrate head. (from Marine invertebrates)
Image 24Ecosystem services delivered by epibenthicbivalve reefs. Reefs provide coastal protection through erosion control and shoreline stabilization, and modify the physical landscape by ecosystem engineering, thereby providing habitat for species by facilitative interactions with other habitats such as tidal flat benthic communities, seagrasses and marshes. (from Marine ecosystem)
Image 25General characteristics of a large marine ecosystem (Gulf of Alaska) (from Marine ecosystem)
... newborn cetacean calves do not have the skills to swim for long periods or to accelerate away from danger, so they swim in the slipstream of their mothers, enabling the mother to protect her calf.
... the Sperm Whale, at 18 metres long, is the largest toothed animal to have ever lived.
... Some sharks are so flexible, they can bend right around and touch their tails with their snouts.
... the Beluga Whale's milkfat is so high, the calf gains up to 2 kilograms per day on the diet. It is so fatty that the colour is green.
... Shark jaws are strong enough to bite a turtle in half.
Cuttlefish are sometimes called the chameleon of the sea because of their remarkable ability to rapidly alter their skin colour at will. Their skin flashes a fast-changing pattern as communication to other cuttlefish and to camouflage them from predators.