Jump to content

5-Fluoro-AMT

From Wikipedia, the free encyclopedia
(Redirected from 5-fluoro-αMT)
5-Fluoro-AMT
Clinical data
Other names5-Fluoro-α-methyltryptamine; 5-Fluoro-alpha-methyltryptamine; 5-Fluoro-αMT; 5-Fluoro-AMT; 5F-AMT; PAL-212; PAL-544
Identifiers
  • 1-(5-fluoro-1H-indol-3-yl)propan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC11H13FN2
Molar mass192.237 g·mol−1
3D model (JSmol)
  • Fc1cc2c(cc1)[nH]cc2CC(N)C
  • InChI=1S/C11H13FN2/c1-7(13)4-8-6-14-11-3-2-9(12)5-10(8)11/h2-3,5-7,14H,4,13H2,1H3 checkY
  • Key:CTGFDWBZMCPVED-UHFFFAOYSA-N checkY
 ☒NcheckY (what is this?)  (verify)

5-Fluoro-α-methyltryptamine (5-Fluoro-αMT, 5F-AMT), also known as PAL-212[1][2] or PAL-544,[3][4] is a putative stimulant, entactogen, and psychedelic tryptamine derivative related to α-methyltryptamine (αMT).

It has been found to act as a fairly balanced serotonin-norepinephrine-dopamine releasing agent (SNDRA),[3][1] as a serotonin 5-HT2A receptor agonist,[1][5] and as a potent and specific MAO-A inhibitor.[6][7][8][9][10] Its EC50Tooltip half-maximal effective concentration values in terms of monoamine release are 14 to 19 nM for serotonin, 78 to 126 nM for norepinephrine, and 32 to 37 nM for dopamine.[3][1][2] Its EC50 at the serotonin 5-HT2A receptor is 8.47 nM and its EmaxTooltip maximal efficacy at the receptor is 107%.[2]

The IC50Tooltip half-maximal inhibitory concentration of 5-fluoro-AMT for MAO-A is 180 to 450 nM.[11][12][6] This is similar to the potency of para-methoxyamphetamine (PMA) and 4-methylthioamphetamine (4-MTA).[11]

The potent serotonin 5-HT2A receptor agonism of 5-fluoro-αMT suggests that it could be an active psychedelic in humans, although it is not known to have been tested in humans and could be dangerous due to its strong inhibition of MAO-A.[6] Accordingly, 5-fluoro-αMT induces the head-twitch response, a behavioral proxy of psychedelic-like effects, in rodents.[13][12][14]

See also

[edit]

References

[edit]
  1. ^ a b c d Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (October 2014). "Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes". Psychopharmacology (Berl). 231 (21): 4135–4144. doi:10.1007/s00213-014-3557-7. PMC 4194234. PMID 24800892.
  2. ^ a b c Blough BE, Landavazo A, Partilla JS, Decker AM, Page KM, Baumann MH, Rothman RB (October 2014). "Alpha-ethyltryptamines as dual dopamine-serotonin releasers". Bioorg Med Chem Lett. 24 (19): 4754–4758. doi:10.1016/j.bmcl.2014.07.062. PMC 4211607. PMID 25193229.
  3. ^ a b c Banks ML, Bauer CT, Blough BE, Rothman RB, Partilla JS, Baumann MH, Negus SS (June 2014). "Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys". Experimental and Clinical Psychopharmacology. 22 (3): 274–284. doi:10.1037/a0036595. PMC 4067459. PMID 24796848.
  4. ^ "5-Fluoro-AMT". Isomer Design. 11 November 2024. Retrieved 7 December 2024.
  5. ^ Chairungsrilerd N, Furukawa K, Tadano T, Kisara K, Ohizumi Y (March 1998). "Effect of gamma-mangostin through the inhibition of 5-hydroxy-tryptamine2A receptors in 5-fluoro-alpha-methyltryptamine-induced head-twitch responses of mice". British Journal of Pharmacology. 123 (5): 855–862. doi:10.1038/sj.bjp.0701695. PMC 1565246. PMID 9535013.
  6. ^ a b c Wagmann L, Brandt SD, Kavanagh PV, Maurer HH, Meyer MR (April 2017). "In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks" (PDF). Toxicol Lett. 272: 84–93. doi:10.1016/j.toxlet.2017.03.007. PMID 28302559.
  7. ^ Kinemuchi H, Arai Y (October 1986). "Selective inhibition of monoamine oxidase A and B by two substrate-analogues, 5-fluoro-alpha-methyltryptamine and p-chloro-beta-methylphenethylamine". Research Communications in Chemical Pathology and Pharmacology. 54 (1): 125–8. doi:10.1016/0028-3908(91)90057-i. PMID 3797802. S2CID 34761939.
  8. ^ Kim SK, Toyoshima Y, Arai Y, Kinemuchi H, Tadano T, Oyama K, et al. (April 1991). "Inhibition of monoamine oxidase by two substrate-analogues, with different preferences for 5-hydroxytryptamine neurons". Neuropharmacology. 30 (4): 329–35. doi:10.1016/0028-3908(91)90057-i. PMID 1852266. S2CID 34761939.
  9. ^ Corne SJ, Pickering RW (1967). "A possible correlation between drug-induced hallucinations in man and a behavioural response in mice". Psychopharmacologia. 11 (1): 65–78. doi:10.1007/bf00401509. PMID 5302272. S2CID 3148623.
  10. ^ Yamamoto T, Ueki S (January 1981). "The role of central serotonergic mechanisms on head-twitch and backward locomotion induced by hallucinogenic drugs". Pharmacology, Biochemistry, and Behavior. 14 (1): 89–95. doi:10.1016/0091-3057(81)90108-8. PMID 6258178. S2CID 45561708.
  11. ^ a b Reyes-Parada M, Iturriaga-Vasquez P, Cassels BK (2019). "Amphetamine Derivatives as Monoamine Oxidase Inhibitors". Front Pharmacol. 10: 1590. doi:10.3389/fphar.2019.01590. PMC 6989591. PMID 32038257.
  12. ^ a b Nakagawasai O, Arai Y, Satoh SE, Satoh N, Neda M, Hozumi M, Oka R, Hiraga H, Tadano T (January 2004). "Monoamine oxidase and head-twitch response in mice. Mechanisms of alpha-methylated substrate derivatives". Neurotoxicology. 25 (1–2): 223–232. Bibcode:2004NeuTx..25..223N. doi:10.1016/S0161-813X(03)00101-3. PMID 14697897.
  13. ^ Halberstadt AL, Geyer MA (2018). "Effect of Hallucinogens on Unconditioned Behavior". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 36: 159–199. doi:10.1007/7854_2016_466. ISBN 978-3-662-55878-2. PMC 5787039. PMID 28224459.
  14. ^ Tadano T, Neda M, Hozumi M, Yonezawa A, Arai Y, Fujita T, Kinemuchi H, Kisara K (February 1995). "alpha-Methylated tryptamine derivatives induce a 5-HT receptor-mediated head-twitch response in mice". Neuropharmacology. 34 (2): 229–234. doi:10.1016/0028-3908(94)00119-d. PMID 7617148.

Further reading

[edit]