Talk:Hockey-stick identity
Appearance
This article is rated Start-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Alternative proof
[edit]Here is another proof:
By the formula for the sum of a geometric series,
Now expand both sides via the binomial theorem and simplify:
The hockey stick identity follows by equating coefficients of .
I came up with this proof, which I think is pretty nice, and I can't find it anywhere else, so I just assume its new. EZ132 (talk) 19:09, 18 September 2020 (UTC)
Induction: does it require induction on both N and K?
[edit]As I understand it, you prove it works for some N and then show this works for N+1. But what about K? Does the proof in this article address different values of K or is that not needed? 50.230.251.244 (talk) 21:29, 4 November 2023 (UTC)