Talk:Group homomorphism
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Picture
[edit]Let me know how I can tweak this picture so it fits with the article's style--Cronholm144 09:30, 31 May 2007 (UTC)
- I guess ver.2 being in the article proves that it fits the style. ^^ -- Jokes Free4Me (talk) 11:51, 30 July 2009 (UTC)
Homomorphisms of abelian groups
[edit]I think that Hom(G,A) becomes an abelian group when A is abelian and G may be any group. It might be worth changing that section to mention this.
Relationship between bijection and isomorphism
[edit]There's a slight divergence of the definition of isomorphism between this article and group isomorphism. That article defines a g. isom. as "a bijective group homomorphism". Therefore it would seem that there's no need for one to "show that its inverse is also a group homomorphism", as this article mentions in its "Types of homomorphic maps" section. -- Jokes Free4Me (talk) 11:51, 30 July 2009 (UTC)
Define "H is homomorphic to G"
[edit]It would be useful to define the relation "H is homorphic to G" and say whether this means that there is a homomorphism from H to G or whether it means there is a homomorphism from G to H.
Tashiro (talk) 07:44, 22 June 2013 (UTC)
- I never heard such a term. Can you cite some source? --Shiyu Ji (talk) 20:49, 1 September 2018 (UTC)
Merge with Homomorphism?
[edit]It seems like a lot of the content on this page is similar too, or duplicated from, the generic wiki page on Homomorphism. Should we merge them? Make this a section on the Homomorphism page?
At the very least we should probably link to the main Homomorphism article *somewhere* on this page.
Crazy2be (talk) 01:01, 6 February 2017 (UTC)
- I would not merge the two articles, homomorphisms are just morphisms in some category. Group homomorphisms are so much more special. But linking the articles is a good idea, go ahead! Jakob.scholbach (talk) 15:05, 6 February 2017 (UTC)
Section Image and kernel: on the notation of multiplication in the group G
[edit]It looks strange to me that in the section Image and kernel, the multiplication on G is denoted as , which usually denotes composition. The other sections all use * to denote multiplication on G. --Shiyu Ji (talk) 20:23, 1 September 2018 (UTC)