Talk:Gauss–Manin connection
Appearance
This article is rated Start-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Requires a more complete definition, more geometric treatment and explanation of how it relates to variation of Hodge structure. I have this one on my to do list now. Stca74 17:34, 16 May 2007 (UTC)
André who?
[edit]The article currently states "The Bombieri-Dwork conjecture, also attributed to André" but does not give the full name, nor a reference. I'm guessing it's Yves André, but I'd rather not have to guess. — Preceding unsigned comment added by 81.224.188.19 (talk) 20:51, 10 August 2019 (UTC)
Phrasing
[edit]"We can use this observation to ask what happens when we try an differentiate cohomology class..."
Is there a typo here? Should this be "a different", or "to differentiate", or..? Dzackgarza (talk) 03:34, 29 August 2019 (UTC)
Sources for new material
[edit]intro + d-modules
[edit]- On the differentiation of de Rham cohomology classes with respect to parameters. Katz + Oda -> differential of SS
- http://www.math.uchicago.edu/~bloch/Beijing_lectures_hypergeometric_161028.pdf
- https://arxiv.org/abs/math/0412235
- add differential in spectral sequence
- relation to kodaira-spencer map
- acting on residues (AMS Hodge theory book)
- Quadimodular forms and elliptic curves (Movasati)
Relation w/ hodge theory
[edit]- http://w3.impa.br/~hossein/myarticles/hodgetheoryII.pdf
- Griffiths transversality use Residues, this makes it obvious why it happens
- GM on basis, check out page 106
Brieskorn modules
[edit]- Period Mapping Via Brieskorn Modules - Saito - http://www.numdam.org/article/BSMF_1991__119_2_141_0.pdf
p-adic connections and monodromy
[edit]- ON P-ADIC MONODROMY Stienstra, Jan; Put, Marius van der; Marel, Bert van der - https://core.ac.uk/download/pdf/148200261.pdf
- MONODROMY OF $p$-ADIC SOLUTIONS OF PICARD-FUCHS EQUATIONS - Jan Stienstra - http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0773-08.pdf