Vesicular monoamine transporter 2
The solute carrier family 18 member 2 (SLC18A2) also known as vesicular monoamine transporter 2 (VMAT2) is a protein that in humans is encoded by the SLC18A2 gene.[5] SLC18A2 is an integral membrane protein that transports monoamines—particularly neurotransmitters such as dopamine, norepinephrine, serotonin, and histamine—from cellular cytosol into synaptic vesicles.[6] In nigrostriatal pathway and mesolimbic pathway dopamine-releasing neurons, SLC18A2 function is also necessary for the vesicular release of the neurotransmitter GABA.[7]
Binding sites and ligands
[edit]SLC18A2 is believed to possess at least two distinct binding sites, which are characterized by tetrabenazine (TBZ) and reserpine binding to the transporter.[8] Amphetamine (TBZ site) and methamphetamine (reserpine site) bind at distinct sites on SLC18A2 to inhibit its function.[8] SLC18A2 inhibitors like tetrabenazine and reserpine reduce the concentration of monoamine neurotransmitters in the synaptic cleft by inhibiting uptake through SLC18A2; the inhibition of SLC18A2 uptake by these drugs prevents the storage of neurotransmitters in synaptic vesicles and reduces the quantity of neurotransmitters that are released through exocytosis. Although many substituted amphetamines induce the release of neurotransmitters from vesicles through SLC18A2 while inhibiting uptake through SLC18A2, they may facilitate the release of monoamine neurotransmitters into the synaptic cleft by simultaneously reversing the direction of transport through the primary plasma membrane transport proteins for monoamines (i.e., the dopamine transporter, norepinephrine transporter, and serotonin transporter) in monoamine neurons. Other SLC18A2 inhibitors such as GZ-793A inhibit the reinforcing effects of methamphetamine, but without producing stimulant or reinforcing effects themselves.[9]
Researchers have found that inhibiting the dopamine transporter (but not SLC18A2) will block the effects of amphetamine and cocaine; while, in another experiment, observing that disabling SLC18A2 (but not the dopamine transporter) prevents any notable action in test animals after amphetamine administration yet not cocaine administration. This suggests that amphetamine may be an atypical substrate with little to no ability to prevent dopamine reuptake via binding to the dopamine transporter but, instead, uses it to enter a neuron where it then interacts with SLC18A2 to induce efflux of dopamine from their vesicles into the cytoplasm whereupon dopamine transporters with amphetamine substrates attached move this recently liberated dopamine into the synaptic cleft.[10]
Although most amphetamines and other monoamine releasing agents (MRA) act on VMAT2, several MRAs, including phentermine, phenmetrazine, and benzylpiperazine (BZP), are inactive at VMAT2.[11][12] Others, including cathinones like mephedrone, methcathinone, and methylone, also show only weak VMAT2 activity (e.g., ~10-fold weaker than the corresponding amphetamines).[13][14][15] MRAs acting on VMAT2 additionally continue to induce monoamine release in in-vitro systems in which VMAT2 is absent or inhibited.[16][17]
List of VMAT2 Inhibitors
[edit]- Lobelane[18][19]
- Quinlobelane[20]
- UKCP-110[21]
- CT-005404[22]
- GZ-11608[23]
- 4-Benzyl-1-(3,4-dimethoxyphenethyl)piperidine [15565-25-0][24]
- PC118857804[25]
- Valbenazine
- JPC-141 (PC155541952)[26]
- arylpiperidinylquinazolines (APQs)[25]
Inhibition
[edit]SLC18A2 is essential for enabling the release of neurotransmitters from the axon terminals of monoamine neurons into the synaptic cleft. If SLC18A2 function is inhibited or compromised, monoamine neurotransmitters such as dopamine cannot be released into the synapse via typical release mechanisms (i.e., exocytosis resulting from action potentials).
Cocaine users display a marked reduction in SLC18A2 immunoreactivity. Those with cocaine-induced mood disorders displayed a significant loss of SLC18A2 immunoreactivity; this might reflect damage to dopamine axon terminals in the striatum. These neuronal changes could play a role in causing disordered mood and motivational processes in more severely addicted users.[27]
Induction
[edit]To date, no agent has been shown to directly interact with SLC18A2 in a way that promotes its activity. A VMAT2 positive allosteric modulator remains an elusive target in addiction and Parkinson's disease research.[28][29] However, it has been observed that certain tricylcic and tetracylcic antidepressants (as well as a high-mesembrine Sceletium tortuosum extract) can upregulate the activity of VMAT2 in vitro, though whether this is due to a direct interaction is unknown.[30][31]
In popular culture
[edit]Geneticist Dean Hamer has suggested that a particular allele of the SLC18A2 gene correlates with spirituality using data from a smoking survey, which included questions intended to measure "self-transcendence". Hamer performed the spirituality study on the side, independently of the National Cancer Institute smoking study. His findings were published in the mass-market book The God Gene: How Faith Is Hard-Wired into Our Genes.[32][33] Hamer himself notes that SLC18A2 plays at most a minor role in influencing spirituality.[34] Furthermore, Hamer's claim that the SLC18A2 gene contributes to spirituality is controversial.[34] Hamer's study has not been published in a peer-reviewed journal and a reanalysis of the correlation demonstrates that it is not statistically significant.[34][35]
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000165646 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025094 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, et al. (March 1993). "A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs". FEBS Letters. 318 (3): 325–330. Bibcode:1993FEBSL.318..325S. doi:10.1016/0014-5793(93)80539-7. PMID 8095030. S2CID 8062412.
- ^ Eiden LE, Schäfer MK, Weihe E, Schütz B (February 2004). "The vesicular amine transporter family (SLC18): amine/proton antiporters required for vesicular accumulation and regulated exocytotic secretion of monoamines and acetylcholine". Pflügers Archiv. 447 (5): 636–640. doi:10.1007/s00424-003-1100-5. PMID 12827358. S2CID 20764857.
- ^ Tritsch NX, Ding JB, Sabatini BL (October 2012). "Dopaminergic neurons inhibit striatal output through non-canonical release of GABA". Nature. 490 (7419): 262–6. Bibcode:2012Natur.490..262T. doi:10.1038/nature11466. PMC 3944587. PMID 23034651.
- ^ a b Sulzer D, Sonders MS, Poulsen NW, Galli A (April 2005). "Mechanisms of neurotransmitter release by amphetamines: a review". Progress in Neurobiology. 75 (6): 406–433. doi:10.1016/j.pneurobio.2005.04.003. PMID 15955613. S2CID 2359509.
They also demonstrated competition for binding between METH and reserpine, suggesting they might bind to the same site on VMAT. George Uhl's laboratory similarly reported that AMPH displaced the VMAT2 blocker tetrabenazine (Gonzalez et al., 1994). Tetrabenazine and reserpine are thought to bind to different sites on VMAT (Schuldiner et al., 1993a)
- ^ Alvers KM, Beckmann JS, Zheng G, Crooks PA, Dwoskin LP, Bardo MT (November 2012). "The effect of VMAT2 inhibitor GZ-793A on the reinstatement of methamphetamine-seeking in rats". Psychopharmacology. 224 (2): 255–262. doi:10.1007/s00213-012-2748-3. PMC 3680349. PMID 22638813.
- ^ Freyberg Z, Sonders MS, Aguilar JI, Hiranita T, Karam CS, Flores J, et al. (February 2016). "Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain". Nature Communications. 7: 10652. Bibcode:2016NatCo...710652F. doi:10.1038/ncomms10652. PMC 4757768. PMID 26879809.
- ^ Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, et al. (February 2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC 4297708. PMID 25548026.
- ^ Partilla JS, Dempsey AG, Nagpal AS, Blough BE, Baumann MH, Rothman RB (October 2006). "Interaction of amphetamines and related compounds at the vesicular monoamine transporter". J Pharmacol Exp Ther. 319 (1): 237–246. doi:10.1124/jpet.106.103622. PMID 16835371.
- ^ Oeri HE (May 2021). "Beyond ecstasy: Alternative entactogens to 3,4-methylenedioxymethamphetamine with potential applications in psychotherapy". J Psychopharmacol. 35 (5): 512–536. doi:10.1177/0269881120920420. PMC 8155739. PMID 32909493.
- ^ Pifl C, Reither H, Hornykiewicz O (May 2015). "The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter". Eur J Pharmacol. 755: 119–126. doi:10.1016/j.ejphar.2015.03.004. PMID 25771452.
- ^ Cozzi NV, Sievert MK, Shulgin AT, Jacob P, Ruoho AE (September 1999). "Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines". Eur J Pharmacol. 381 (1): 63–69. doi:10.1016/s0014-2999(99)00538-5. PMID 10528135.
- ^ Simmler LD (2018). "Monoamine Transporter and Receptor Interaction Profiles of Synthetic Cathinones". Synthetic Cathinones. Vol. 12. Cham: Springer International Publishing. p. 97–115. doi:10.1007/978-3-319-78707-7_6. ISBN 978-3-319-78706-0.
While the determination of drug effects at the isolated target (i.e., DAT, NET, and SERT) can characterize the direct drug action at the target protein, other physiological components can also contribute significantly to the overall effect of the drug. It has been proposed that transporter-mediated, drug-induced efflux of neurotransmitter occurs through effects on the vesicular monoamine transporter 2 (VMAT2), depleting neurotransmitter from the vesicles into the cytosol (Nickell et al. 2014). Accordingly, full assessment of release would require testing the effects of a drug on the membrane transporters (SERT, DAT, and NET) and the effects of a drug at VMAT2. Alternatively, a more physiological system, such as synaptosomes or brain slices, could be used. However, reverse transport can also occur in cell lines that only express the plasma membrane transporters but not VMAT2 (Eshleman et al. 2013; Scholze et al. 2000) and in synaptosomes when VMAT2 is inhibited (Rothman et al. 2001).
- ^ Halberstadt AL, Brandt SD, Walther D, Baumann MH (March 2019). "2-Aminoindan and its ring-substituted derivatives interact with plasma membrane monoamine transporters and α2-adrenergic receptors". Psychopharmacology (Berl). 236 (3): 989–999. doi:10.1007/s00213-019-05207-1. PMC 6848746. PMID 30904940.
In contrast to assay systems involving non-neuronal cells transfected with transporter proteins, synaptosomes possess all of the cellular machinery necessary for neurotransmitter synthesis, release, metabolism, and reuptake. Synaptosomes, however, do not model all of the effects of amphetamine-type agents because the use of reserpine removes any contribution of the vesicular monoamine transporter VMAT2 (SLC18A2) to the release process. In addition to acting as a substrate for plasma membrane monoamine transporters, amphetamine also binds to VMAT, resulting in the redistribution of monoamines from vesicular stores to the cytoplasm (Sulzer et al. 1995; Partilla et al. 2006; Freyberg et al. 2016). Although transporter substrates can induce monoamine release in the absence of VMAT binding (Fon et al. 1997), it is important to recognize that 2-aminoindans may have effects in intact nerve terminals that are not fully replicated in synaptosomes. Follow-up studies will be conducted to evaluate whether 2-aminoindans are capable of interacting with VMAT.
- ^ Nickell JR, Krishnamurthy S, Norrholm S, Deaciuc G, Siripurapu KB, Zheng G, et al. (February 2010). "Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2". J Pharmacol Exp Ther. 332 (2): 612–21. doi:10.1124/jpet.109.160275. PMC 2812121. PMID 19855096.
- ^ Ding D, Nickell JR, Deaciuc AG, Penthala NR, Dwoskin LP, Crooks PA (November 2013). "Synthesis and evaluation of novel azetidine analogs as potent inhibitors of vesicular [3H]dopamine uptake". Bioorg Med Chem. 21 (21): 6771–7. doi:10.1016/j.bmc.2013.08.001. PMC 3914663. PMID 23993667.
- ^ Vartak AP, Gabriela Deaciuc A, Dwoskin LP, Crooks PA (June 2010). "Quinlobelane: a water-soluble lobelane analogue and inhibitor of VMAT2". Bioorg Med Chem Lett. 20 (12): 3584–7. doi:10.1016/j.bmcl.2010.04.117. PMC 3726001. PMID 20494575.
- ^ Beckmann JS, Siripurapu KB, Nickell JR, Horton DB, Denehy ED, Vartak A, et al. (December 2010). "The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats". J Pharmacol Exp Ther. 335 (3): 841–51. doi:10.1124/jpet.110.172742. PMC 2993560. PMID 20805303.
- ^ Rotolo RA, Presby RE, Tracy O, Asar S, Yang JH, Correa M, et al. (February 2021). "The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology". Neuropharmacology. 183: 108325. doi:10.1016/j.neuropharm.2020.108325. PMID 32956676.
- ^ Lee NR, Zheng G, Leggas M, Janganati V, Nickell JR, Crooks PA, et al. (November 2019). "GZ-11608, a Vesicular Monoamine Transporter-2 Inhibitor, Decreases the Neurochemical and Behavioral Effects of Methamphetamine". J Pharmacol Exp Ther. 371 (2): 526–543. doi:10.1124/jpet.119.258699. PMC 6863457. PMID 31413138.
- ^ Nickell JR, Culver JP, Janganati V, Zheng G, Dwoskin LP, Crooks PA (July 2016). "1,4-Diphenalkylpiperidines: A new scaffold for the design of potent inhibitors of the vesicular monoamine transporter-2". Bioorg Med Chem Lett. 26 (13): 2997–3000. doi:10.1016/j.bmcl.2016.05.025. PMC 4946565. PMID 27212067.
- ^ a b Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, et al. (October 2018). "Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter". J Med Chem. 61 (20): 9121–31. doi:10.1021/acs.jmedchem.8b00542. PMID 30240563.
- ^ Chandler CM, Nickell JR, George Wilson A, Culver JP, Crooks PA, Bardo MT, et al. (October 2024). "Vesicular monoamine transporter-2 inhibitor JPC-141 prevents methamphetamine-induced dopamine toxicity and blocks methamphetamine self-administration in rats". Biochem Pharmacol. 228: 116189. doi:10.1016/j.bcp.2024.116189. PMC 11546627. PMID 38580165.
- ^ Little KY, Krolewski DM, Zhang L, Cassin BJ (January 2003). "Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users". The American Journal of Psychiatry. 160 (1): 47–55. doi:10.1176/appi.ajp.160.1.47. PMID 12505801.
- ^ Lohr KM, Stout KA, Dunn AR, Wang M, Salahpour A, Guillot TS, et al. (May 2015). "Increased Vesicular Monoamine Transporter 2 (VMAT2; Slc18a2) Protects against Methamphetamine Toxicity". ACS Chemical Neuroscience. 6 (5): 790–9. doi:10.1021/acschemneuro.5b00010. PMC 4489556. PMID 25746685.
- ^ Lohr KM, Bernstein AI, Stout KA, Dunn AR, Lazo CR, Alter SP, et al. (July 2014). "Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo". Proceedings of the National Academy of Sciences of the United States of America. 111 (27): 9977–82. Bibcode:2014PNAS..111.9977L. doi:10.1073/pnas.1402134111. PMC 4103325. PMID 24979780.
- ^ Coetzee DD, López V, Smith C (January 2016). "High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor". Journal of Ethnopharmacology. 177: 111–6. doi:10.1016/j.jep.2015.11.034. PMID 26615766.
- ^ Wang X, Marmouzi I, Finnie PS, Støve SI, Bucher ML, Lipina TV, et al. (October 2023). "Tricyclic and tetracyclic antidepressants upregulate VMAT2 activity and rescue disease-causing VMAT2 variants". bioRxiv: 2023.10.09.561601. doi:10.1101/2023.10.09.561601. PMC 10592782. PMID 37873339.
- ^ Hamer DH (2004). The God gene: how faith is hardwired into our genes. Garden City, N.Y: Doubleday. ISBN 0-385-50058-0.
- ^ Kluger J, Chu J, Liston B, Sieger M, Williams D (25 October 2004). "Is God in our genes?". TIME. Time Inc. Archived from the original on 30 September 2007. Retrieved 8 April 2007.
- ^ a b c Silveira LA (2008). "Experimenting with spirituality: analyzing The God Gene in a nonmajors laboratory course". CBE: Life Sciences Education. 7 (1): 132–145. doi:10.1187/cbe.07-05-0029. PMC 2262126. PMID 18316816.
- ^ Zimmer C (October 2004). "Faith-Boosting Genes: A search for the genetic basis of spirituality". Scientific American. doi:10.1038/scientificamerican1004-110.
Further reading
[edit]- Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP, et al. (July 2009). "Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis". European Journal of Human Genetics. 17 (7): 946–957. doi:10.1038/ejhg.2008.264. PMC 2986499. PMID 19156168.
- Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, et al. (February 2010). "In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133". Journal of Nuclear Medicine. 51 (2): 223–8. doi:10.2967/jnumed.109.070094. PMID 20080893.
- Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, et al. (October 2008). "Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas". Journal of Molecular Histology. 39 (5): 543–551. doi:10.1007/s10735-008-9195-9. PMC 2566800. PMID 18791800.
- Tsolakis AV, Grimelius L, Stridsberg M, Falkmer SE, Waldum HL, Saras J, et al. (June 2009). "Obestatin/ghrelin cells in normal mucosa and endocrine tumours of the stomach". European Journal of Endocrinology. 160 (6): 941–9. doi:10.1530/EJE-09-0001. PMID 19289536.
- Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (January 2008). "VMAT2 gene expression and function as it applies to imaging beta-cell mass". Journal of Molecular Medicine. 86 (1): 5–16. doi:10.1007/s00109-007-0242-x. PMID 17665159. S2CID 20374043.
- Roe BE, Tilley MR, Gu HH, Beversdorf DQ, Sadee W, Haab TC, et al. (August 2009). "Financial and psychological risk attitudes associated with two single nucleotide polymorphisms in the nicotine receptor (CHRNA4) gene". PLOS ONE. 4 (8): e6704. Bibcode:2009PLoSO...4.6704R. doi:10.1371/journal.pone.0006704. PMC 2724734. PMID 19693267.
- Sørensen KD, Wild PJ, Mortezavi A, Adolf K, Tørring N, Heebøll S, et al. (February 2009). "Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy". Clinical Cancer Research. 15 (4): 1400–10. doi:10.1158/1078-0432.CCR-08-2268. PMID 19228741.
- Watabe M, Nakaki T (October 2008). "Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells". Molecular Pharmacology. 74 (4): 933–940. doi:10.1124/mol.108.048546. PMID 18599602. S2CID 1844073.
- Catlow K, Ashurst HL, Varro A, Dimaline R (June 2007). "Identification of a gastrin response element in the vesicular monoamine transporter type 2 promoter and requirement of 20 S proteasome subunits for transcriptional activity". The Journal of Biological Chemistry. 282 (23): 17069–77. doi:10.1074/jbc.M611421200. PMID 17442673.
- Yosifova A, Mushiroda T, Stoianov D, Vazharova R, Dimova I, Karachanak S, et al. (September 2009). "Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population". Journal of Affective Disorders. 117 (1–2): 87–97. doi:10.1016/j.jad.2008.12.021. PMID 19328558.
- Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, et al. (October 2009). "Genetical genomic determinants of alcohol consumption in rats and humans". BMC Biology. 7: 70. doi:10.1186/1741-7007-7-70. PMC 2777866. PMID 19874574.
- Zheng G, Dwoskin LP, Crooks PA (November 2006). "Vesicular monoamine transporter 2: role as a novel target for drug development". The AAPS Journal. 8 (4): E682 – E692. doi:10.1208/aapsj080478. PMC 2751365. PMID 17233532.
- Crowley JJ, Lipsky RH, Lucki I, Berrettini WH (October 2008). "Variation in the genes encoding vesicular monoamine transporter 2 and beta-1 adrenergic receptor and antidepressant treatment outcome". Psychiatric Genetics. 18 (5): 248–251. doi:10.1097/YPG.0b013e3283052ff7. PMID 18797399. S2CID 206148319.
- Guo JT, Chen AQ, Kong Q, Zhu H, Ma CM, Qin C (January 2008). "Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells". Cellular and Molecular Neurobiology. 28 (1): 35–47. doi:10.1007/s10571-007-9227-0. PMID 17985233. S2CID 20230170.
- Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H, et al. (March 2008). "A network of dopaminergic gene variations implicated as risk factors for schizophrenia". Human Molecular Genetics. 17 (5): 747–758. doi:10.1093/hmg/ddm347. PMC 3777405. PMID 18045777.
- Verney C, Lebrand C, Gaspar P (June 2002). "Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter". The Anatomical Record. 267 (2): 87–93. doi:10.1002/ar.10089. PMID 11997877. S2CID 2088307.
- Perlis RH, Moorjani P, Fagerness J, Purcell S, Trivedi MH, Fava M, et al. (November 2008). "Pharmacogenetic analysis of genes implicated in rodent models of antidepressant response: association of TREK1 and treatment resistance in the STAR(*)D study". Neuropsychopharmacology. 33 (12): 2810–9. doi:10.1038/npp.2008.6. PMC 10034848. PMID 18288090.
- Caudle WM, Richardson JR, Wang MZ, Taylor TN, Guillot TS, McCormack AL, et al. (July 2007). "Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration". The Journal of Neuroscience. 27 (30): 8138–48. doi:10.1523/JNEUROSCI.0319-07.2007. PMC 6672727. PMID 17652604.
External links
[edit]- Vesicular+Monoamine+Transporter+2 at the U.S. National Library of Medicine Medical Subject Headings (MeSH)