IRAS 13349+2438
IRAS 13349+2438 | |
---|---|
Observation data (J2000.0 epoch) | |
Constellation | Boötes |
Right ascension | 13h 37m 18.71s |
Declination | +24° 23′ 03.27″ |
Redshift | 0.107641 |
Heliocentric radial velocity | 32,270 km/s |
Distance | 1.447 Gly (443.0 Mpc) |
Apparent magnitude (V) | 15.0 |
magnitude (K) | 10.4 |
Characteristics | |
Type | Sy1 |
Apparent size (V) | 0.42' x 0.27' |
Notable features | prototype infrared-luminous quasar |
Other designations | |
SFRS 270, PGC 101275, NVSS J133718+242302, IRAS F13349+2438, 2RE J1337+244, RBS 1295 |
IRAS 13349+2438 is a Seyfert galaxy located in the constellation of Boötes. It is located 1.45 billion light-years from Earth[1] and a prototype infrared-luminous low-redshift quasar with a projected luminosity of 2 x1046 erg s-1 according to Beichman who discovered it in 1986.[2]
IRAS 13349+2438 has a spiral-like appearance according to digital imaging made on the galaxy's host and the nearby environment. It has a companion galaxy, suggesting the galaxy might have interacted with it, given the evidence of tidal structures.[3] It is likely the interaction has given rise to its quasar activity as interstellar dust and gas are supplied to the galaxy's nucleus. Additionally, IRAS 13349+2438 shows increasing high optical polarization at declining wavebands.[4][5] It is a radio-quiet quasar despite weak radio emission being reported at 6 GHz.[6][7]
The galaxy has strong properties of Fe II emission and weak [O III] that is relative to Hβ.[8] A study made by Chandra X-ray spectrum with the HETGS grating spectrometer, also confirms IRAS 13349+2438 has a rich absorption spectra of quasar outflows. It is also said the object contains a double-peaked absorption measure distribution whom researchers finds the object has an ionized column density of NH = (1.2 ± 0.3) x 1022 cm-2.[9]
IRAS 13349+2438 has been observed by the XMM Newton Observatory on a few occasions. In 2000, XMM Newton discovered that the galaxy contains several broad absorption lines from various ionized elements like nitrogen, oxygen and iron L-shell ions. Further evidence shows, IRAS 13349+2438 also has an unresolved transitional array of an inner-shell absorption, possibly misidentified to be an OVII edge through observations made by moderate resolution spectrometers.[10] In 2018, IRAS 13349+2438 was observed again, which it contains large numbers of absorption lines originating from warm absorption zones with measured velocities of ~-600 km s-1.[11] A joint study by NuSTAR and XMM Newton confirms presence of iron absorption lines at both 8 and 9 keV, with velocities of 0.14c and 0.27c. Based on findings, IRAS 13349+2438 shows possible detections of multiphase ultra-fast outflows.[12]
In a study sample of narrow-line Seyfert galaxies, IRAS 13349+2438 contains an unresolved core region with an approximate size of 540 x 235 parsecs. It has a high brightness temperature of ~72,000 K, indicating the galaxy has a low-power relativistic beamed jet.[13] Furthermore, it has an average star formation rate over 100 Myr of 105.8 ± 29.5 MΘ yr-1 and mass of 21.44 ± 2.68 1010 MΘ.[14]
References
[edit]- ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-09-18.
- ^ Beichman, C. A.; Soifer, B. T.; Helou, G.; Chester, T. J.; Neugebauer, G.; Gillett, F. C.; Low, F. J. (1986-09-01). "Discovery of an Infrared-loud Quasar". The Astrophysical Journal. 308: L1. Bibcode:1986ApJ...308L...1B. doi:10.1086/184732. ISSN 0004-637X.
- ^ Lee, Julia C.; Kriss, Gerard A.; Chakravorty, Susmita; Rahoui, Farid; Young, Andrew J.; Brandt, William N.; Hines, Dean C.; Ogle, Patrick M.; Reynolds, Christopher S. (2013-02-20). "The ionized absorber and nuclear environment of IRAS 13349+2438: multi-wavelength insights from coordinated Chandra HETGS, HST STIS, HET and Spitzer IRS". Monthly Notices of the Royal Astronomical Society. 430 (4): 2650–2679. doi:10.1093/mnras/stt050. ISSN 1365-2966.
- ^ Wills, Beverley J.; Wills, D.; Evans, Neal J., II; Natta, A.; Thompson, K. L.; Breger, M.; Sitko, M. L. (1992-11-01). "Polarimetry and Spectrophotometry of the QSO IRAS 13349+2438 and the Unification of Active Galaxies". The Astrophysical Journal. 400: 96. Bibcode:1992ApJ...400...96W. doi:10.1086/171976. ISSN 0004-637X.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Thompson, K. L.; Wills, B. J.; Wills, D.; Evans, N. J.; Breger, M.; Natta, A.; Sitko, M. J. (1987-09-01). "Polarization and Reddening in the QSO, IRAS 13349+2438". Bulletin of the American Astronomical Society. 19: 1083. Bibcode:1987BAAS...19.1083T.
- ^ Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Ryan, P. J.; Feigelson, E. D.; Brinkmann, W.; Siebert, J. (1997-04-01). "Radio-loud active galaxies in the northern ROSAT All-Sky Survey. I. Radio identifications". Astronomy and Astrophysics Supplement Series. 122 (2): 235–247. arXiv:astro-ph/9607058. Bibcode:1997A&AS..122..235L. doi:10.1051/aas:1997331. ISSN 0365-0138.
- ^ Chini, R.; Kreysa, E.; Salter, C. J. (1987-08-01). "1300 mu.m detection of the radio-quiet quasar 13349+2438". Astronomy and Astrophysics. 182: L63–L65. Bibcode:1987A&A...182L..63C. ISSN 0004-6361.
- ^ Boroson, Todd A.; Green, Richard F. (1992-05-01). "The Emission-Line Properties of Low-Redshift Quasi-stellar Objects". The Astrophysical Journal Supplement Series. 80: 109. Bibcode:1992ApJS...80..109B. doi:10.1086/191661. ISSN 0067-0049.
- ^ Holczer, Tomer; Behar, Ehud; Kaspi, Shai (July 2007). "Absorption Measure Distribution of the Outflow in IRAS 13349+2438: Direct Observation of Thermal Instability?". The Astrophysical Journal. 663 (2): 799. doi:10.1086/518416. ISSN 0004-637X.
- ^ Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.; Santos-Lleo, M. (2001-01-01). "Complex resonance absorption structure in the X-ray spectrum of IRAS 13349+2438". Astronomy & Astrophysics. 365 (1): L168–L173. doi:10.1051/0004-6361:20000081. ISSN 0004-6361.
- ^ Parker, M. L.; Matzeu, G. A.; Guainazzi, M.; Kalfountzou, E.; Miniutti, G.; Santos-Lleó, M.; Schartel, N. (2018-10-01). "A high-velocity component to the complex absorption in IRAS 13349+2438". Monthly Notices of the Royal Astronomical Society. 480 (2): 2365–2376. arXiv:1807.06310. Bibcode:2018MNRAS.480.2365P. doi:10.1093/mnras/sty2020. ISSN 0035-8711.
- ^ Parker, M. L.; Matzeu, G. A.; Alston, W. N.; Fabian, A. C.; Lobban, A.; Miniutti, G.; Pinto, C.; Santos-Lleó, M.; Schartel, N. (2020-10-11). "Detection of a possible multiphase ultra-fast outflow in IRAS 13349+2438 with NuSTAR and XMM-Newton". Monthly Notices of the Royal Astronomical Society: Letters. 498 (1): L140–L144. arXiv:2008.05965. doi:10.1093/mnrasl/slaa144. ISSN 1745-3925.
- ^ Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M. L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; Lähteenmäki, A.; Richards, J. L.; Ciroi, S.; Cracco, V.; Frezzato, M. (2018-06-01). "Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective". Astronomy & Astrophysics. 614: A87. doi:10.1051/0004-6361/201832612. ISSN 0004-6361.
- ^ Salomé, Q; Krongold, Y; Longinotti, A L; Bishetti, M. "Star formation efficiency and AGN feedback in narrow-line Seyfert 1 galaxies with fast X-ray nuclear winds". Oxford Academic.