Jump to content

Portal:Chemistry

From Wikipedia, the free encyclopedia
(Redirected from Chemistry portal)

Introduction

Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and compounds made of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they undergo during reactions with other substances. Chemistry also addresses the nature of chemical bonds in chemical compounds.

In the scope of its subject, chemistry occupies an intermediate position between physics and biology. It is sometimes called the central science because it provides a foundation for understanding both basic and applied scientific disciplines at a fundamental level. For example, chemistry explains aspects of plant growth (botany), the formation of igneous rocks (geology), how atmospheric ozone is formed and how environmental pollutants are degraded (ecology), the properties of the soil on the Moon (cosmochemistry), how medications work (pharmacology), and how to collect DNA evidence at a crime scene (forensics).

Chemistry has existed under various names since ancient times. It has evolved, and now chemistry encompasses various areas of specialisation, or subdisciplines, that continue to increase in number and interrelate to create further interdisciplinary fields of study. The applications of various fields of chemistry are used frequently for economic purposes in the chemical industry. (Full article...)

Selected article

Xenon tetrafluoride was first created in 1962 to be the first simple compound of xenon, a noble gas widely thought to be chemically inert. The creation opened a new era for the study of chemical bonds.
Xenon (/ˈzɛnɒn/ in the UK, /ˈznɒn/ in the US) is a chemical element that has the symbol Xe and atomic number 54. A colourless, dense, odourless noble gas, xenon occurs in the earth's atmosphere in trace amounts. Although generally unreactive, xenon can undergo a few chemical reactions such as the formation of xenon hexafluoroplatinate, the first noble gas compound to be synthesised.

Naturally occurring xenon is made of nine stable isotopes, but there are also over 40 unstable isotopes that undergo radioactive decay. The isotope ratios of xenon are an important tool for studying the early history of the Solar System. Xenon-135 is produced as a result of nuclear fission and acts as a neutron absorber in nuclear reactors.

Xenon is used in flash lamps and arc lamps, and as a general anesthetic. The first excimer laser design used a xenon dimer molecule (Xe2) as its lasing medium, and the earliest laser designs used xenon flash lamps as pumps. Xenon is also being used to search for hypothetical weakly interactive massive particles and as the propellant for ion thrusters in spacecraft.

Subcategories

History and Philosophy of Chemistry

Antoine Lavoisier
Antoine Lavoisier

Many chemists have an interest in the history of chemistry. Those with philosophical interests will be interested that the philosophy of chemistry has quite recently developed along a path somewhat different from the general philosophy of science.

Other articles that might interest you are:

There is a Wikipedia Project on the History of Science.

Chemistry Resources

Wikipedia:WikiProject Chemicals/Data is a collection of links and references that are useful for chemistry-related works. This includes free online chemical databases, publications, patents, computer programs, and various tools.

unit-conversion.info A good place to figure out what equals what.

General Chemistry Online Clear text and comprehensive coverage of general chemistry topics by Fred Senese, Dept. of Chemistry Frostburg State University

General Chemistry Demonstration at Purdue Video clips (and descriptions) of lecture demonstrations.

Chemistry Webercises Directory A large listing of chemistry resources maintained by Steven Murov, Emeritus Chemistry Professor Modesto Junior College.

MathMol MathMol (Mathematics and Molecules) is a good starting point for those interested in the field of molecular modeling.

ABC-Chemistry A directory of free full-text journals in chemistry, biochemistry and related subjects.

The Element Song A goofy little song about all of the elements.

Selected image

Faraday's lab
Faraday's lab
Credit: Harriet Moore
The laboratory of Michael Faraday (1791-1867), an influential English chemist and physicist.

Selected biography

Jacobus Henricus van 't Hoff
Jacobus Henricus van 't Hoff (1852-1911) was a Dutch physical and organic chemist, and recipient of the inaugural Nobel Prize for Chemistry. His first major findings accounted for the phenomenon of optical activity by assuming that the chemical bonds between carbon atoms and their neighbors were directed towards the corners of a regular tetrahedron. This three-dimensional structure perfectly accounted for the isomers found in nature (stereochemistry). He shares credit for this idea with the French chemist Joseph Le Bel, who independently came up with the same idea. He received the first Nobel Prize for his work on relating the behaviour of solutions to that displayed by gases.

Techniques used by chemists

Equipment used by chemists

Chemistry in society

Chemistry in industry

WikiProjects

Topics

Periodic Table

Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Hydrogen &
alkali metals
Alkaline earth metals Triels Tetrels Pnicto­gens Chal­co­gens Halo­gens Noble
gases
Period

1

Hydro­gen1H1.0080 He­lium2He4.0026
2 Lith­ium3Li6.94 Beryl­lium4Be9.0122 Boron5B10.81 Carbon6C12.011 Nitro­gen7N14.007 Oxy­gen8O15.999 Fluor­ine9F18.998 Neon10Ne20.180
3 So­dium11Na22.990 Magne­sium12Mg24.305 Alumin­ium13Al26.982 Sili­con14Si28.085 Phos­phorus15P30.974 Sulfur16S32.06 Chlor­ine17Cl35.45 Argon18Ar39.95
4 Potas­sium19K39.098 Cal­cium20Ca40.078 Scan­dium21Sc44.956 Tita­nium22Ti47.867 Vana­dium23V50.942 Chrom­ium24Cr51.996 Manga­nese25Mn54.938 Iron26Fe55.845 Cobalt27Co58.933 Nickel28Ni58.693 Copper29Cu63.546 Zinc30Zn65.38 Gallium31Ga69.723 Germa­nium32Ge72.630 Arsenic33As74.922 Sele­nium34Se78.971 Bromine35Br79.904 Kryp­ton36Kr83.798
5 Rubid­ium37Rb85.468 Stront­ium38Sr87.62 Yttrium39Y88.906 Zirco­nium40Zr91.224 Nio­bium41Nb92.906 Molyb­denum42Mo95.95 Tech­netium43Tc​[97] Ruthe­nium44Ru101.07 Rho­dium45Rh102.91 Pallad­ium46Pd106.42 Silver47Ag107.87 Cad­mium48Cd112.41 Indium49In114.82 Tin50Sn118.71 Anti­mony51Sb121.76 Tellur­ium52Te127.60 Iodine53I126.90 Xenon54Xe131.29
6 Cae­sium55Cs132.91 Ba­rium56Ba137.33 1 asterisk Lute­tium71Lu174.97 Haf­nium72Hf178.49 Tanta­lum73Ta180.95 Tung­sten74W183.84 Rhe­nium75Re186.21 Os­mium76Os190.23 Iridium77Ir192.22 Plat­inum78Pt195.08 Gold79Au196.97 Mer­cury80Hg200.59 Thallium81Tl204.38 Lead82Pb207.2 Bis­muth83Bi208.98 Polo­nium84Po​[209] Asta­tine85At​[210] Radon86Rn​[222]
7 Fran­cium87Fr​[223] Ra­dium88Ra​[226] 1 asterisk Lawren­cium103Lr​[266] Ruther­fordium104Rf​[267] Dub­nium105Db​[268] Sea­borgium106Sg​[269] Bohr­ium107Bh​[270] Has­sium108Hs​[271] Meit­nerium109Mt​[278] Darm­stadtium110Ds​[281] Roent­genium111Rg​[282] Coper­nicium112Cn​[285] Nihon­ium113Nh​[286] Flerov­ium114Fl​[289] Moscov­ium115Mc​[290] Liver­morium116Lv​[293] Tenness­ine117Ts​[294] Oga­nesson118Og​[294]
1 asterisk Lan­thanum57La138.91 Cerium58Ce140.12 Praseo­dymium59Pr140.91 Neo­dymium60Nd144.24 Prome­thium61Pm​[145] Sama­rium62Sm150.36 Europ­ium63Eu151.96 Gadolin­ium64Gd157.25 Ter­bium65Tb158.93 Dyspro­sium66Dy162.50 Hol­mium67Ho164.93 Erbium68Er167.26 Thulium69Tm168.93 Ytter­bium70Yb173.05  
1 asterisk Actin­ium89Ac​[227] Thor­ium90Th232.04 Protac­tinium91Pa231.04 Ura­nium92U238.03 Neptu­nium93Np​[237] Pluto­nium94Pu​[244] Ameri­cium95Am​[243] Curium96Cm​[247] Berkel­ium97Bk​[247] Califor­nium98Cf​[251] Einstei­nium99Es​[252] Fer­mium100Fm​[257] Mende­levium101Md​[258] Nobel­ium102No​[259]

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Sources

  1. ^ Meija, Juris; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–291. doi:10.1515/pac-2015-0305.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
Discover Wikipedia using portals