Jump to content

Zinc peroxide

From Wikipedia, the free encyclopedia
Zinc peroxide
Zn2+ [O22−]
Names
Other names
zinc dioxide
zinc bioxide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.013.843 Edit this at Wikidata
EC Number
  • 215-226-7
UNII
  • InChI=1S/O2.Zn/c1-2;/q-2;+2
    Key: IPTOGCUGCFHDSS-UHFFFAOYSA-N
  • [Zn+2].[O-][O-]
Properties
ZnO2
Molar mass 97.408 g/mol
Appearance white-yellowish powder
Density 1.57 g/cm3
Melting point 212 °C (414 °F; 485 K) (decomposes)
Acidity (pKa) ~7 (3% solution)
Band gap 3.8 eV (indirect) [1]
Structure
Cubic
Pa3
Hazards
GHS labelling:[2]
GHS03: OxidizingGHS07: Exclamation mark
Warning
H271, H315, H319
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3
0
1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Zinc peroxide (ZnO2) is a chemical compound of zinc that appears as a bright yellow powder at room temperature. It was historically used as a surgical antiseptic. More recently zinc peroxide has also been used as an oxidant in explosives and pyrotechnic mixtures. Its properties have been described as a transition between ionic and covalent peroxides.[3]

Preparation and structure

[edit]
Structure of solid zinc peroxide

Zinc peroxide can be synthesized through the reaction of zinc chloride and hydrogen peroxide.[4]

According to X-ray crystallography, the compound consists of octahedral Zn(II) centers bonded to six distinct peroxide (O22-) ligands. The overall motif is very similar to that for iron pyrite (FeS2). The structure, with intact O-O bonds, makes clear that this material is a peroxide, not a dioxide.

Medical Use

[edit]

The treatment of burrowing ulcers in the abdominal wall with zinc peroxide was first recorded in 1933 and throughout the 1940s ZnO2 was used as a disinfectant in surgical .[5] Zinc peroxide was, however, deemed ineffective against certain bacterial strains, such as Streptococcus viridans, staphylococcus aureus, E. coli, B. proteus, and B. pyocyoneus.

Safety

[edit]

Zinc peroxide is hazardous in case of skin contact, of eye contact, or inhalation.[6]

References

[edit]
  1. ^ A.L. Companion (1962). "The diffuse reflectance spectra of zinc oxide and zinc peroxide". Journal of Physics and Chemistry of Solids. 23 (12): 1685–1688. Bibcode:1962JPCS...23.1685C. doi:10.1016/0022-3697(62)90205-6.
  2. ^ "C&L Inventory". echa.europa.eu.
  3. ^ R.D. Ayengar (1971). "ESR Studies on Zinc Peroxide and Zinc Oxide Obtained from a Decomposition of Zinc Peroxide". J. Phys. Chem. 75 (20): 3089–3092. doi:10.1021/j100689a009.
  4. ^ W. Chen (2009). "Synthesis, Thermal Stability and Properties of Zinc Peroxide Nanoparticles" (PDF). J. Phys. Chem. 113 (4): 1320–1324. doi:10.1021/jp808714v. S2CID 53965473.
  5. ^ F. Meleney (1941). "Zinc Peroxide in Surgical Infections". The American Journal of Nursing. 41 (6): 645–649. doi:10.1097/00000446-194106000-00004. S2CID 75606177.
  6. ^ "Zinc Peroxide Material Safety Sheet". Retrieved 2012-05-27.