Jump to content

WASP-62

Coordinates: Sky map 05h 48m 33.5938s, −63° 59′ 18.3868″
From Wikipedia, the free encyclopedia
WASP-62 / Naledi
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Dorado
Right ascension 05h 48m 33.59333s[1]
Declination −63° 59′ 18.3884″[1]
Apparent magnitude (V) 10.21[2]
Characteristics
Evolutionary stage main-sequence star
Spectral type F
Apparent magnitude (B) 10.73[2]
Apparent magnitude (G) 10.077±0.003[1]
Apparent magnitude (R) 9.93[2]
Astrometry
Radial velocity (Rv)15.24±0.25[1] km/s
Proper motion (μ) RA: -15.439 mas/yr[1]
Dec.: 26.151 mas/yr[1]
Parallax (π)5.6910 ± 0.0113 mas[1]
Distance573 ± 1 ly
(175.7 ± 0.3 pc)
Details[3]
Mass1.250±0.050 M
Radius1.280±0.050 R
Surface gravity (log g)4.45±0.1 cgs
Temperature6230±80 K
Metallicity [Fe/H]0.040±0.060 dex
Rotational velocity (v sin i)8.70±0.40 km/s
Age2.60+0.50
−0.70
 Gyr
Other designations
Naledi, CPD−64 484, TOI-102, TIC 149603524, WASP-62, TYC 8900-874-1, GSC 08900-00874, 2MASS J05483359-6359183[2]
Database references
SIMBADdata

WASP-62, formally named Naledi, is a single star about 573 light-years (176 parsecs) away. It is an F class main-sequence star, orbited by a planet, WASP-62b. The age of WASP-62 is much younger than the Sun at 0.8±0.6 billion years,[4] and it has a metal abundance similar to the Sun.

Nomenclature

[edit]

The designation WASP-62 indicates that this was the 62nd star found to have a planet by the Wide Angle Search for Planets.

In December 2019, WASP-62 was named Naledi and its planet was named Krotoa by amateur astronomers from South Africa as part of the second NameExoWorlds campaign.[5][6]

Planetary system

[edit]

A transiting hot Jupiter exoplanet orbiting WASP-62 was discovered by WASP in 2012.[7] The planet's equilibrium temperature is 1440±30 K, but the measured average temperature is colder at 1329.6±44.8 K.[8] In 2020, a transmission spectrum indicated the atmosphere of WASP-62b is free of clouds. It contains sodium and possibly silicon hydrides.[9]

The planetary orbit is slightly misaligned to the equatorial plane of the star, with the misalignment angle equal to 19.4+5.1
−4.9
°.[4]

The WASP-62 planetary system[8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Krotoa 0.562±0.042 MJ 0.05672+0.00075
−0.00079
[3]
4.4119530(30) <0.075[3] 88.30+0.90
−0.60
°
1.390±0.060 RJ

References

[edit]
  1. ^ a b c d e f Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b c d "CPD-64 484". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2 November 2023.
  3. ^ a b c Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.
  4. ^ a b Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2016), "Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems", Monthly Notices of the Royal Astronomical Society, 464 (1): 810–839, arXiv:1610.00600, Bibcode:2017MNRAS.464..810B, doi:10.1093/mnras/stw2316, S2CID 53497449
  5. ^ "2019 Approved Names". nameexoworlds.iau.org. IAU. Retrieved 2 November 2023.
  6. ^ "International Astronomical Union Approves Names For New Stars And Exoplanets". Space in Africa. 18 December 2019. Retrieved 2020-11-12.
  7. ^ Hellier, Coel; Anderson, D. R.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2012), "Seven transiting hot-Jupiters from WASP-South, Euler and TRAPPIST: WASP-47b, WASP-55b, WASP-61b, WASP-62b, WASP-63b, WASP-66b & WASP-67b", Monthly Notices of the Royal Astronomical Society, 426 (1): 739–750, arXiv:1204.5095, Bibcode:2012MNRAS.426..739H, doi:10.1111/j.1365-2966.2012.21780.x, S2CID 54713354
  8. ^ a b Kilpatrick, Brian M.; Lewis, Nikole K.; Kataria, Tiffany; Deming, Drake; Ingalls, James G.; Krick, Jessica E.; Tucker, Gregory S. (2016), "Spitzer secondary eclipse depths with multiple intrapixel sensitivity correction methods observations of WASP-13b, WASP-15b, WASP-16b, WASP-62b, and HAT-P-22b", The Astronomical Journal, 153 (1): 22, arXiv:1611.08708, Bibcode:2017AJ....153...22K, doi:10.3847/1538-3881/153/1/22, S2CID 12168984
  9. ^ Alam, Munazza K.; Lopez-Morales, Mercedes; MacDonald, Ryan J.; Nikolov, Nikolay; Kirk, James; Goyal, Jayesh M.; Sing, David K.; Wakeford, Hannah R.; Rathcke, Alexander D.; Deming, Drake L.; Sanz-Forcada, Jorge; Lewis, Nikole K.; Barstow, Joanna K.; Mikal-Evans, Thomas; Buchhave, Lars A. (2021), "Evidence of a Clear Atmosphere for WASP-62b: The Only Known Transiting Gas Giant in the JWST Continuous Viewing Zone", The Astrophysical Journal, 906 (2): L10, arXiv:2011.06424, Bibcode:2021ApJ...906L..10A, doi:10.3847/2041-8213/abd18e, S2CID 226306572