User talk:Dragonbyte
In this article the Newton's method equation which is mentioned under the title: Numerical approximation of inverse problem reads
E_{n+1} = E_{n} - \frac{f'(E_{n})}{f(E_{n})} = E_{n} - \frac{ E_{n} - \epsilon \sin(E_{n}) - M(t) }{ 1 - \epsilon \cos(E_{n})}
and should read:
E_{n+1} = E_{n} - \frac{f(E_{n})}{f'(E_{n})} = E_{n} - \frac{ E_{n} - \epsilon \sin(E_{n}) - M(t) }{ 1 - \epsilon \cos(E_{n})}
In the equation the function, f(E), and the derivative of the function, f'(E), are interchanged in the ratio. The expanded expression on the right side is correct. That ratio has the function as the numerator and the derivative of the function as the denominator. See: http://wiki.riteme.site/wiki/Newton%27s_method
Dragonbyte (talk) 08:03, 7 August 2012 (UTC) dragonbyte