f ( x ) = ∑ i 2 = 1 1 ( ∑ i 1 = 1 5 ( λ 1 , i 1 ϕ 1 [ ( ∑ i 0 = 1 1 ( λ 0 , i 0 ϕ 0 ( x i 0 + η 0 i 1 ) ) ) + i 1 ] ) ) + η 1 i 2 + i 2 {\displaystyle f(x)=\sum _{i_{2}=1}^{1}\left(\sum _{i_{1}=1}^{5}\left(\lambda _{1,i_{1}}\phi _{1}\left[\left(\sum _{i_{0}=1}^{1}\left(\lambda _{0,i_{0}}\phi _{0}(x_{i_{0}}+\eta _{0}i_{1})\right)\right)+i_{1}\right]\right)\right)+\eta _{1}i_{2}+i_{2}}
f ( x , t ) = 6 i 3 ( t 3 ( t ( p t + r ) 2 − 4 ( q t + 3 ) 3 ) − p t 3 − 9 s t 2 ) − 2 t 4 ( p 2 − 4 q 3 ) + 2 t 3 ( 36 q 2 − p ( r + 9 s ) ) + 18 s t 3 ( t ( p t + r ) 2 − 4 ( q t + 3 ) 3 ) + 2 p t t 3 ( t ( p t + r ) 2 − 4 ( q t + 3 ) 3 ) + t 2 ( 216 q − r 2 − 81 s 2 ) + 216 t {\displaystyle f(x,t)={\frac {6i{\sqrt {3}}\left({\sqrt {t^{3}\left(t(pt+r)^{2}-4(qt+3)^{3}\right)}}-pt^{3}-9st^{2}\right)}{-2t^{4}\left(p^{2}-4q^{3}\right)+2t^{3}\left(36q^{2}-p(r+9s)\right)+18s{\sqrt {t^{3}\left(t(pt+r)^{2}-4(qt+3)^{3}\right)}}+2pt{\sqrt {t^{3}\left(t(pt+r)^{2}-4(qt+3)^{3}\right)}}+t^{2}\left(216q-r^{2}-81s^{2}\right)+216t}}}
| − 6 a 0 a 1 − a 2 0 a 1 − 4 a 2 9 a 3 0 0 a 3 − 9 a 4 9 a 0 a 3 − 8 a 4 9 0 a 1 | {\displaystyle {\begin{vmatrix}-6a_{0}&a_{1}&-a_{2}&0\\a_{1}&-{\frac {4a_{2}}{9}}&a_{3}&0\\0&a_{3}&-9a_{4}&9a_{0}\\a_{3}&-{\frac {8a_{4}}{9}}&0&a_{1}\end{vmatrix}}}
f ( a + b ± m ( 2 − m ) ( a − b ) 2 2 ) = f ( a ) + f ( b ) ± m ( 2 − m ) ( f ( a ) − f ( b ) ) 2 2 {\displaystyle f\left({\frac {a+b\pm {\sqrt {m(2-m)(a-b)^{2}}}}{2}}\right)={\frac {f(a)+f(b)\pm {\sqrt {m(2-m)(f(a)-f(b))^{2}}}}{2}}}
f ( 1 3 ( a + b + c ± a 2 + b 2 + c 2 − a b − a c − b c ) ) = 1 3 ( f ( a ) + f ( b ) + f ( c ) ± f ( a ) 2 + f ( b ) 2 + f ( c ) 2 − f ( a ) f ( b ) − f ( a ) f ( c ) − f ( b ) f ( c ) ) {\displaystyle f\left({\frac {1}{3}}\left(a+b+c\pm {\sqrt {a^{2}+b^{2}+c^{2}-ab-ac-bc}}\right)\right)={\frac {1}{3}}\left(f(a)+f(b)+f(c)\pm {\sqrt {f(a)^{2}+f(b)^{2}+f(c)^{2}-f(a)f(b)-f(a)f(c)-f(b)f(c)}}\right)}
( ν d + 1 ) P ( u ) + ν ( z − u ) P ′ ( u ) {\displaystyle (\nu d+1)P(u)+\nu (z-u)P'(u)}
p ( 3 ) = 1 − ( 3 ( 2 π ) 3 ∫ − π π ∫ − π π ∫ − π π d x d y d z 3 − cos x − cos y − cos z ) − 1 ≈ 0.340573 {\displaystyle \color {White}p(3)=1-\left({\frac {3}{(2\pi )^{3}}}\int _{-\pi }^{\pi }\int _{-\pi }^{\pi }\int _{-\pi }^{\pi }{\frac {\mathrm {d} x\,\mathrm {d} y\,\mathrm {d} z}{3-\cos {x}-\cos {y}-\cos {z}}}\right)^{-1}\approx 0.340573}
Q 2 ( u ) = d 2 ( α − d ) ( 3 d 2 a d − 3 ( − α + d − 3 ) ( d − α ) 2 + ( d − 1 ) ( a d − 1 ( a d − 1 ( − α + d − 1 ) ( ( d − 1 ) a d − 1 ( α − d + 1 ) 2 + d ( d 2 u − d ( 2 α u + u − 2 z ) + α ( α u + u + z ) − 3 z ) ) − d 2 z ( 2 d ( z − u ) + 2 α u + ( α − 3 ) z ) ) + d 3 z 2 ( d ( u − z ) − α u + z ) ) + d a d − 2 ( d − α ) ( − ( 3 d − 4 ) a d − 1 ( − α + d − 2 ) ( − α + d − 1 ) − 2 d ( α ( − 2 d u + 2 u + z ) + ( d − 2 ) ( d u + 2 z ) + α 2 u ) ) ) ( ( d − 1 ) ( a d − 1 2 ( α − d + 1 ) 2 + 2 d z a d − 1 + d 2 z 2 ) − 2 d a d − 2 ( α − d ) ( α − d + 2 ) ) 2 . {\displaystyle Q_{2}(u)={\frac {{\mathfrak {d}}^{2}(\alpha -{\mathfrak {d}})\left(3{\mathfrak {d}}^{2}a_{{\mathfrak {d}}-3}(-\alpha +{\mathfrak {d}}-3)({\mathfrak {d}}-\alpha )^{2}+({\mathfrak {d}}-1)\left(a_{{\mathfrak {d}}-1}\left(a_{{\mathfrak {d}}-1}(-\alpha +{\mathfrak {d}}-1)\left(({\mathfrak {d}}-1)a_{{\mathfrak {d}}-1}(\alpha -{\mathfrak {d}}+1)^{2}+{\mathfrak {d}}\left({\mathfrak {d}}^{2}u-{\mathfrak {d}}(2\alpha u+u-2z)+\alpha (\alpha u+u+z)-3z\right)\right)-{\mathfrak {d}}^{2}z(2{\mathfrak {d}}(z-u)+2\alpha u+(\alpha -3)z)\right)+{\mathfrak {d}}^{3}z^{2}({\mathfrak {d}}(u-z)-\alpha u+z)\right)+{\mathfrak {d}}a_{{\mathfrak {d}}-2}({\mathfrak {d}}-\alpha )\left(-(3{\mathfrak {d}}-4)a_{{\mathfrak {d}}-1}(-\alpha +{\mathfrak {d}}-2)(-\alpha +{\mathfrak {d}}-1)-2{\mathfrak {d}}\left(\alpha (-2{\mathfrak {d}}u+2u+z)+({\mathfrak {d}}-2)({\mathfrak {d}}u+2z)+\alpha ^{2}u\right)\right)\right)}{\left(({\mathfrak {d}}-1)\left(a_{{\mathfrak {d}}-1}^{2}(\alpha -{\mathfrak {d}}+1)^{2}+2{\mathfrak {d}}za_{{\mathfrak {d}}-1}+{\mathfrak {d}}^{2}z^{2}\right)-2{\mathfrak {d}}a_{{\mathfrak {d}}-2}(\alpha -{\mathfrak {d}})(\alpha -{\mathfrak {d}}+2)\right){}^{2}}}.}
D i s c r i m i n a n t ( F ( u ) , u ) = e i π d ( 3 d − 7 ) / 2 d 2 ( α − d ) ( α a 0 + a 1 z + ( ( α − 1 ) a 1 + ( d − 1 ) d z ) ( ( α − d + 1 ) a d − 1 + d z ) d 2 ( d − α ) ) {\displaystyle \mathrm {Discriminant} (F(u),u)=e^{i\pi {\mathfrak {d}}(3{\mathfrak {d}}-7)/2}\,{\mathfrak {d}}^{2}(\alpha -{\mathfrak {d}})\left(\alpha a_{0}+a_{1}z+{\frac {\left((\alpha -1)a_{1}+({\mathfrak {d}}-1){\mathfrak {d}}z\right)\left((\alpha -{\mathfrak {d}}+1)a_{{\mathfrak {d}}-1}+{\mathfrak {d}}z\right)}{{\mathfrak {d}}^{2}({\mathfrak {d}}-\alpha )}}\right)}
D i s c r i m i n a n t ( F ( u ) , u ) = e i π d ( 5 d − 13 ) / 2 ( α − d ) 1 d 2 ( ( d − 1 ) ( a d − 1 2 ( α − d + 1 ) 2 + 2 d z a d − 1 + d 2 z 2 ) d − α + 2 d a d − 2 ( α − d + 2 ) ) 2 ( ( α − 1 ) a 1 + 2 a 2 z − ( α a 0 + a 1 z + ( ( α − 1 ) a 1 + 2 a 2 z ) ( ( α − d + 1 ) a d − 1 + d z ) d 2 ( d − α ) ) d 2 ( α − d ) ( 3 d 2 a d − 3 ( − α + d − 3 ) ( d − α ) 2 + ( d − 1 ) ( a d − 1 ( a d − 1 ( − α + d − 1 ) ( ( d − 1 ) a d − 1 ( α − d + 1 ) 2 + d z ( α + 2 d − 3 ) ) − d 2 z 2 ( α + 2 d − 3 ) ) + ( 1 − d ) d 3 z 3 ) + d a d − 2 ( d − α ) ( − ( 3 d − 4 ) a d − 1 ( − α + d − 2 ) ( − α + d − 1 ) − 2 d z ( α + 2 d − 4 ) ) ) ( ( d − 1 ) ( a d − 1 2 ( α − d + 1 ) 2 + 2 d z a d − 1 + d 2 z 2 ) − 2 d a d − 2 ( α − d ) ( α − d + 2 ) ) 2 ) {\displaystyle \mathrm {Discriminant} (F(u),u)=e^{i\pi {\mathfrak {d}}(5{\mathfrak {d}}-13)/2}\,(\alpha -{\mathfrak {d}}){\frac {1}{{\mathfrak {d}}^{2}}}\left({\frac {({\mathfrak {d}}-1)\left(a_{{\mathfrak {d}}-1}^{2}(\alpha -{\mathfrak {d}}+1)^{2}+2{\mathfrak {d}}za_{{\mathfrak {d}}-1}+{\mathfrak {d}}^{2}z^{2}\right)}{{\mathfrak {d}}-\alpha }}+2{\mathfrak {d}}a_{{\mathfrak {d}}-2}(\alpha -{\mathfrak {d}}+2)\right)^{2}\left(\color {Green}(\alpha -1)a_{1}+2a_{2}z\color {Black}-{\frac {\left(\color {Red}\alpha a_{0}+a_{1}z+{\dfrac {\left((\alpha -1)a_{1}+2a_{2}z\right)\left((\alpha -{\mathfrak {d}}+1)a_{{\mathfrak {d}}-1}+{\mathfrak {d}}z\right)}{{\mathfrak {d}}^{2}({\mathfrak {d}}-\alpha )}}\color {Black}\right){\mathfrak {d}}^{2}(\alpha -{\mathfrak {d}})\left(3{\mathfrak {d}}^{2}a_{{\mathfrak {d}}-3}(-\alpha +{\mathfrak {d}}-3)({\mathfrak {d}}-\alpha )^{2}+({\mathfrak {d}}-1)\left(a_{{\mathfrak {d}}-1}\left(a_{{\mathfrak {d}}-1}(-\alpha +{\mathfrak {d}}-1)\left(({\mathfrak {d}}-1)a_{{\mathfrak {d}}-1}(\alpha -{\mathfrak {d}}+1)^{2}+{\mathfrak {d}}z(\alpha +2{\mathfrak {d}}-3)\right)-{\mathfrak {d}}^{2}z^{2}(\alpha +2{\mathfrak {d}}-3)\right)+(1-{\mathfrak {d}}){\mathfrak {d}}^{3}z^{3}\right)+{\mathfrak {d}}a_{{\mathfrak {d}}-2}({\mathfrak {d}}-\alpha )\left(-(3{\mathfrak {d}}-4)a_{{\mathfrak {d}}-1}(-\alpha +{\mathfrak {d}}-2)(-\alpha +{\mathfrak {d}}-1)-2{\mathfrak {d}}z(\alpha +2{\mathfrak {d}}-4)\right)\right)}{\left(({\mathfrak {d}}-1)\left(a_{{\mathfrak {d}}-1}^{2}(\alpha -{\mathfrak {d}}+1)^{2}+2{\mathfrak {d}}za_{{\mathfrak {d}}-1}+{\mathfrak {d}}^{2}z^{2}\right)-2{\mathfrak {d}}a_{{\mathfrak {d}}-2}(\alpha -{\mathfrak {d}})(\alpha -{\mathfrak {d}}+2)\right)^{2}}}\right)}
lim D 1 → 33 / 100 , D 2 → 83 / 50 | 6 Γ ( 4 − D 1 ) 2 a Γ ( 3 − D 1 ) b Γ ( 2 − D 1 ) c Γ ( 1 − D 1 ) 0 0 0 6 Γ ( 4 − D 1 ) 2 a Γ ( 3 − D 1 ) b Γ ( 2 − D 1 ) c Γ ( 1 − D 1 ) 0 0 0 6 Γ ( 4 − D 1 ) 2 a Γ ( 3 − D 1 ) b Γ ( 2 − D 1 ) c Γ ( 1 − D 1 ) 6 Γ ( 4 − D 2 ) 2 a Γ ( 3 − D 2 ) b Γ ( 2 − D 2 ) c Γ ( 1 − D 2 ) 0 0 0 6 Γ ( 4 − D 2 ) 2 a Γ ( 3 − D 2 ) b Γ ( 2 − D 2 ) c Γ ( 1 − D 2 ) 0 0 0 6 Γ ( 4 − D 2 ) 2 a Γ ( 3 − D 2 ) b Γ ( 2 − D 2 ) c Γ ( 1 − D 2 ) | ≈ a 2 b 2 − 3.79847 b 3 − 3.59317 a 3 c + 15.2455 a b c − 18.7119 c 2 . {\displaystyle \lim _{D_{1}\to 33/100,\,D_{2}\to 83/50}\left|{\begin{array}{cccccc}{\frac {6}{\Gamma \left(4-D_{1}\right)}}&{\frac {2a}{\Gamma \left(3-D_{1}\right)}}&{\frac {b}{\Gamma \left(2-D_{1}\right)}}&{\frac {c}{\Gamma \left(1-D_{1}\right)}}&0&0\\0&{\frac {6}{\Gamma \left(4-D_{1}\right)}}&{\frac {2a}{\Gamma \left(3-D_{1}\right)}}&{\frac {b}{\Gamma \left(2-D_{1}\right)}}&{\frac {c}{\Gamma \left(1-D_{1}\right)}}&0\\0&0&{\frac {6}{\Gamma \left(4-D_{1}\right)}}&{\frac {2a}{\Gamma \left(3-D_{1}\right)}}&{\frac {b}{\Gamma \left(2-D_{1}\right)}}&{\frac {c}{\Gamma \left(1-D_{1}\right)}}\\{\frac {6}{\Gamma \left(4-D_{2}\right)}}&{\frac {2a}{\Gamma \left(3-D_{2}\right)}}&{\frac {b}{\Gamma \left(2-D_{2}\right)}}&{\frac {c}{\Gamma \left(1-D_{2}\right)}}&0&0\\0&{\frac {6}{\Gamma \left(4-D_{2}\right)}}&{\frac {2a}{\Gamma \left(3-D_{2}\right)}}&{\frac {b}{\Gamma \left(2-D_{2}\right)}}&{\frac {c}{\Gamma \left(1-D_{2}\right)}}&0\\0&0&{\frac {6}{\Gamma \left(4-D_{2}\right)}}&{\frac {2a}{\Gamma \left(3-D_{2}\right)}}&{\frac {b}{\Gamma \left(2-D_{2}\right)}}&{\frac {c}{\Gamma \left(1-D_{2}\right)}}\\\end{array}}\right|\approx a^{2}b^{2}-3.79847b^{3}-3.59317a^{3}c+15.2455abc-18.7119c^{2}.}
| u + u 2 + − 3 ( u ( u − 1 ) ) 2 2 + 2 u ( u − 1 ) | | u − 1 | = | u + u 2 + − 3 ( u ( u − 1 ) ) 2 2 + 2 u ( u − 1 ) − 1 | | u | {\displaystyle \left\vert {\frac {u+u^{2}+{\sqrt {-3(u(u-1))^{2}}}}{2+2u(u-1)}}\right\vert \vert u-1\vert =\left\vert {\frac {u+u^{2}+{\sqrt {-3(u(u-1))^{2}}}}{2+2u(u-1)}}-1\right\vert \vert u\vert }
| u 3 − 3 − ( u − 1 ) 2 u 2 u + 3 − ( u − 1 ) 2 u 2 − u | = | − u 3 + 3 u 2 − 3 − ( u − 1 ) 2 u 2 u − 2 u | {\displaystyle \left\vert u^{3}-{\sqrt {3}}{\sqrt {-(u-1)^{2}u^{2}}}u+{\sqrt {3}}{\sqrt {-(u-1)^{2}u^{2}}}-u\right\vert =\left\vert -u^{3}+3u^{2}-{\sqrt {3}}{\sqrt {-(u-1)^{2}u^{2}}}u-2u\right\vert }
| z 3 − − 3 ( z − 1 ) 2 z 2 z − z + − 3 ( z − 1 ) 2 z 2 | = | − z 3 + 3 z 2 − − 3 ( z − 1 ) 2 z 2 z − 2 z | {\displaystyle \left|z^{3}-{\sqrt {-3(z-1)^{2}z^{2}}}z-z+{\sqrt {-3(z-1)^{2}z^{2}}}\right|=\left|-z^{3}+3z^{2}-{\sqrt {-3(z-1)^{2}z^{2}}}z-2z\right|}
| ( z − 1 ) ( z ( z + 1 ) − − 3 ( z − 1 ) 2 z 2 ) | = | z ( ( z − 1 ) ( z − 2 ) + − 3 ( z − 1 ) 2 z 2 ) | {\displaystyle \left|(z-1)\left(z(z+1)-{\sqrt {-3(z-1)^{2}z^{2}}}\right)\right|=\left|z\left((z-1)(z-2)+{\sqrt {-3(z-1)^{2}z^{2}}}\right)\right|}