Jump to content

User:TacoTuesday247/Skeletal muscle

From Wikipedia, the free encyclopedia

Lead

[edit]

Exercise[edit]

[edit]

Main article: Exercise Jogging is one form of aerobic exercise. Physical exercise is often recommended as a means of improving motor skills, fitness, muscle and bone strength, and joint function. Exercise has several effects upon muscles, connective tissue, bone, and the nerves that stimulate the muscles. One such effect is muscle hypertrophy, an increase in size of muscle due to an increase in the number of muscle fibers or cross-sectional area of myofibrils. Muscle changes depend on the type of exercise used.

Generally, there are two types of exercise regimes, aerobic and anaerobic. Aerobic exercise (e.g. marathons) involves activities of low intensity but long duration, during which the muscles used are below their maximal contraction strength. Aerobic activities rely on aerobic respiration (i.e. citric acid cycle and electron transport chain) for metabolic energy by consuming fat, protein, carbohydrates, and oxygen. Muscles involved in aerobic exercises contain a higher percentage of Type I (or slow-twitch) muscle fibers, which primarily contain mitochondrial and oxidation enzymes associated with aerobic respiration. These are the stability muscles, and work almost all the time with any exercise. On the contrary, anaerobic exercise is associated with activities of high intensity but short duration, such as sprinting or weight lifting. The anaerobic activities predominately use Type II, fast-twitch, muscle fibers. Type II muscle fibers rely on glucogenesis for energy during anaerobic exercise. There are two types of Type II muscle fibers; type IIa and type IIx. Type IIa muscle fibers are used during strenghth training, and type IIx are used during max lifts. During anaerobic exercise, type II fibers consume little oxygen, protein and fat, produce large amounts of lactic acid and are fatigable. Many exercises are partially aerobic and anaerobic; for example, soccer and rock climbing.

The presence of lactic acid has an inhibitory effect on ATP generation within the muscle. It can even stop ATP production if the intracellular concentration becomes too high. However, endurance training mitigates the buildup of lactic acid through increased capillarization and myoglobin. This increases the ability to remove waste products, like lactic acid, out of the muscles in order to not impair muscle function. Once moved out of muscles, lactic acid can be used by other muscles or body tissues as a source of energy, or transported to the liver where it is converted back to pyruvate. In addition to increasing the level of lactic acid, strenuous exercise results in the loss of potassium ions in muscle. This may facilitate the recovery of muscle function by protecting against fatigue.

Delayed onset muscle soreness (DOMS) is pain or discomfort that may be felt one to three days after exercising and generally subsides two to three days later. Once thought to be caused by lactic acid build-up, a more recent theory is that it is caused by tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Since lactic acid disperses fairly rapidly, it could not explain pain experienced days after exercise. Proper stretching, foam rolling, or using a deep tissue massage gun can alleviate DOMS and help to prevent it if used correctly.

Article body

[edit]

References

[edit]