User:Srw2023/Sediment transport
copied from [[article]]
Settling velocity
[edit]The settling velocity (also called the "fall velocity" or "terminal velocity") is a function of the particle Reynolds number. Generally, for small particles (laminar approximation), it can be calculated with Stokes' Law. For larger particles (turbulent particle Reynolds numbers), fall velocity is calculated with the turbulent drag law. Dietrich (1982) compiled a large amount of published data to which he empirically fit settling velocity curves.[1] Ferguson and Church (2006) analytically combined the expressions for Stokes flow and a turbulent drag law into a single equation that works for all sizes of sediment, and successfully tested it against the data of Dietrich.[2] Their equation is
- .
In this equation ws is the sediment settling velocity, g is acceleration due to gravity, and D is mean sediment diameter. is the kinematic viscosity of water, which is approximately 1.0 x 10−6 m2/s for water at 20 °C.
and are constants related to the shape and smoothness of the grains.
Constant | Smooth Spheres | Natural Grains: Sieve Diameters | Natural Grains: Nominal Diameters | Limit for Ultra-Angular Grains |
---|---|---|---|---|
18 | 18 | 20 | 24 | |
0.4 | 1.0 | 1.1 | 1.2 |
The expression for fall velocity can be simplified so that it can be solved only in terms of D. We use the sieve diameters for natural grains, , and values given above for and . From these parameters, the fall velocity is given by the expression:
Alternatively, settling velocity for a particle of sediment can be also be derived using Stokes Law assuming quiescent (or still) fluid in steady state. The resulting formulation for settling velocity is,
,
where is the gravitational constant, 9.81 ; is the density of the sediment; is the density of water; is the sediment particle diameter (commonly assumed to be the median particle diameter, often referred to as in field studies); and is the molecular viscosity of water. The Stokes settling velocity can be thought of the terminal velocity resulting from balancing a particles' buoyant (proportional to the cross-sectional area) and gravitational forces (proportional to the mass). Small particles will have a slower settling velocity than heavier particles, as seen in the figure. This has implications for many aspects of sediment transport, for example, how far downstream a particle might be advected in a river.
This is the sandbox page where you will draft your initial Wikipedia contribution.
If you're starting a new article, you can develop it here until it's ready to go live. If you're working on improvements to an existing article, copy only one section at a time of the article to this sandbox to work on, and be sure to use an edit summary linking to the article you copied from. Do not copy over the entire article. You can find additional instructions here. Remember to save your work regularly using the "Publish page" button. (It just means 'save'; it will still be in the sandbox.) You can add bold formatting to your additions to differentiate them from existing content. |
Article Draft
[edit]Lead
[edit]Article body
[edit]References
[edit]- ^ Dietrich, W. E. (1982). "Settling Velocity of Natural Particles" (PDF). Water Resources Research. 18 (6): 1615–1626. Bibcode:1982WRR....18.1615D. doi:10.1029/WR018i006p01615.
- ^ Ferguson, R. I.; Church, M. (2006). "A Simple Universal Equation for Grain Settling Velocity". Journal of Sedimentary Research. 74 (6): 933–937. doi:10.1306/051204740933.