Jump to content

User:Srw2023/Sediment transport

From Wikipedia, the free encyclopedia


copied from [[article]]

Settling velocity

[edit]
Streamlines around a sphere falling through a fluid. This illustration is accurate for laminar flow, in which the particle Reynolds number is small. This is typical for small particles falling through a viscous fluid; larger particles would result in the creation of a turbulent wake.

The settling velocity (also called the "fall velocity" or "terminal velocity") is a function of the particle Reynolds number. Generally, for small particles (laminar approximation), it can be calculated with Stokes' Law. For larger particles (turbulent particle Reynolds numbers), fall velocity is calculated with the turbulent drag law. Dietrich (1982) compiled a large amount of published data to which he empirically fit settling velocity curves.[1] Ferguson and Church (2006) analytically combined the expressions for Stokes flow and a turbulent drag law into a single equation that works for all sizes of sediment, and successfully tested it against the data of Dietrich.[2] Their equation is

.

In this equation ws is the sediment settling velocity, g is acceleration due to gravity, and D is mean sediment diameter. is the kinematic viscosity of water, which is approximately 1.0 x 10−6 m2/s for water at 20 °C.

and are constants related to the shape and smoothness of the grains.

Constant Smooth Spheres Natural Grains: Sieve Diameters Natural Grains: Nominal Diameters Limit for Ultra-Angular Grains
18 18 20 24
0.4 1.0 1.1 1.2

The expression for fall velocity can be simplified so that it can be solved only in terms of D. We use the sieve diameters for natural grains, , and values given above for and . From these parameters, the fall velocity is given by the expression:

Alternatively, settling velocity for a particle of sediment can be also be derived using Stokes Law assuming quiescent (or still) fluid in steady state. The resulting formulation for settling velocity is,

,

where is the gravitational constant, 9.81 ; is the density of the sediment; is the density of water; is the sediment particle diameter (commonly assumed to be the median particle diameter, often referred to as in field studies); and is the molecular viscosity of water. The Stokes settling velocity can be thought of the terminal velocity resulting from balancing a particles' buoyant (proportional to the cross-sectional area) and gravitational forces (proportional to the mass). Small particles will have a slower settling velocity than heavier particles, as seen in the figure. This has implications for many aspects of sediment transport, for example, how far downstream a particle might be advected in a river.  

A plot showing the relationship between sediment particle diameter and the Stokes settling velocity


Article Draft

[edit]

Lead

[edit]

Article body

[edit]

References

[edit]
  1. ^ Dietrich, W. E. (1982). "Settling Velocity of Natural Particles" (PDF). Water Resources Research. 18 (6): 1615–1626. Bibcode:1982WRR....18.1615D. doi:10.1029/WR018i006p01615.
  2. ^ Ferguson, R. I.; Church, M. (2006). "A Simple Universal Equation for Grain Settling Velocity". Journal of Sedimentary Research. 74 (6): 933–937. doi:10.1306/051204740933.