Jump to content

User:Rockpocket/MGP/ZC3HC1

From Wikipedia, the free encyclopedia

Model organisms[edit]

Model organisms have been used in the study of ZC3HC1 function. A conditional knockout mouse line, called Zc3hc1tm1a(KOMP)Wtsi[14][15] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[16][17][18]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[12][19] Twenty two tests were carried out on mutant mice and eleven significant abnormalities were observed.[12] Fewer than expected homozygous mutant mice were identified at weaning. Mutants appear to be subfertile, had decreased vertical activity in an open field, decreased lean body mass, decreased rib number and decreased mature B cell number. Males also had a decreased body weight, an abnormal posture and atypical indirect calorimetry data. Females also had an abnormally short snout and atypical haematology parameters .[12]

References[edit]

  1. ^ "Body weight data for Zc3hc1". Wellcome Trust Sanger Institute.
  2. ^ "Anxiety data for Zc3hc1". Wellcome Trust Sanger Institute.
  3. ^ "Neurological assessment data for Zc3hc1". Wellcome Trust Sanger Institute.
  4. ^ "Dysmorphology data for Zc3hc1". Wellcome Trust Sanger Institute.
  5. ^ "Indirect calorimetry data for Zc3hc1". Wellcome Trust Sanger Institute.
  6. ^ "DEXA data for Zc3hc1". Wellcome Trust Sanger Institute.
  7. ^ "Radiography data for Zc3hc1". Wellcome Trust Sanger Institute.
  8. ^ "Haematology data for Zc3hc1". Wellcome Trust Sanger Institute.
  9. ^ "Peripheral blood lymphocytes data for Zc3hc1". Wellcome Trust Sanger Institute.
  10. ^ "Salmonella infection data for Zc3hc1". Wellcome Trust Sanger Institute.
  11. ^ "Citrobacter infection data for Zc3hc1". Wellcome Trust Sanger Institute.
  12. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley.{{cite web}}: CS1 maint: location (link)
  13. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  14. ^ "International Knockout Mouse Consortium".
  15. ^ "Mouse Genome Informatics".
  16. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  17. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature 474: 262-263. doi:10.1038/474262a.{{cite web}}: CS1 maint: location (link)
  18. ^ Collins FS, Rossant J, Wurst W (January 2007). A mouse for all reasons. Cell 128(1): 9-13. doi:10.1016/j.cell.2006.12.018 PMID 17218247.{{cite book}}: CS1 maint: location (link) CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  19. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMID 21722353.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)