Second-order Stokes wave on arbitrary depth [ edit ]
The ratio S = a 2 / a of the amplitude a 2 of the harmonic with twice the wavenumber (2 k ), to the amplitude a of the fundamental , according to Stokes's second-order theory for surface gravity waves. On the horizontal axis is the relative water depth h / λ, with h the mean depth and λ the wavelength , while the vertical axis is the Stokes parameter S divided by the wave steepness ka (with k = 2π / λ ). Description: * the blue line is valid for arbitrary water depth, while * the dashed red line is the shallow-water limit (water depth small compared to the wavelength), and * the dash-dot green line is the asymptotic limit for deep water waves.
The surface elevation η and the velocity potential Φ are, according to Stokes's second-order theory of surface gravity waves on a fluid layer of mean depth h :[ 1] [ 2]
η
(
x
,
t
)
=
a
{
cos
θ
+
k
a
3
−
σ
2
4
σ
3
cos
2
θ
}
+
O
(
(
k
a
)
3
)
,
Φ
(
x
,
z
,
t
)
=
a
ω
k
1
sinh
k
h
×
{
cosh
k
(
z
+
h
)
sin
θ
+
k
a
3
cosh
2
k
(
z
+
h
)
8
sinh
3
k
h
sin
2
θ
}
−
(
k
a
)
2
1
2
sinh
2
k
h
g
t
k
+
O
(
(
k
a
)
3
)
,
c
=
ω
k
=
g
k
σ
+
O
(
(
k
a
)
2
)
,
σ
=
tanh
k
h
and
θ
(
x
,
t
)
=
k
x
−
ω
t
.
{\displaystyle {\begin{aligned}\eta (x,t)=&a\left\{\cos \,\theta +ka\,{\frac {3-\sigma ^{2}}{4\,\sigma ^{3}}}\,\cos \,2\theta \right\}+{\mathcal {O}}\left((ka)^{3}\right),\\\Phi (x,z,t)=&a\,{\frac {\omega }{k}}\,{\frac {1}{\sinh \,kh}}\\&\times \left\{\cosh \,k(z+h)\sin \,\theta +ka\,{\frac {3\cosh \,2k(z+h)}{8\,\sinh ^{3}\,kh}}\,\sin \,2\theta \right\}\\&-(ka)^{2}\,{\frac {1}{2\,\sinh \,2kh}}\,{\frac {g\,t}{k}}+{\mathcal {O}}\left((ka)^{3}\right),\\c=&{\frac {\omega }{k}}={\sqrt {{\frac {g}{k}}\,\sigma }}+{\mathcal {O}}\left((ka)^{2}\right),\\\sigma =&\tanh \,kh\quad {\text{and}}\quad \theta (x,t)=kx-\omega t.\end{aligned}}}
Observe that for finite depth the velocity potential Φ contains a linear drift in time, independent of position (x and z ). Both this temporal drift and the double-frequency term (containing sin 2θ) in Φ vanish for deep-water waves.
Second Order Stokes Wave as amplitude grows.
Stokes and Ursell parameters[ edit ]
The ratio S of the free-surface amplitudes at second order and first order – according to Stokes's second-order theory – is:[ 3]
S
=
k
a
3
−
tanh
2
k
h
4
tanh
3
k
h
.
{\displaystyle {\mathcal {S}}=ka\,{\frac {3-\tanh ^{2}\,kh}{4\,\tanh ^{3}\,kh}}.}
In deep water, for large kh the ratio S has the asymptote
lim
k
h
→
∞
S
=
1
2
k
a
.
{\displaystyle \lim _{kh\to \infty }{\mathcal {S}}={\frac {1}{2}}\,ka.}
For long waves, i.e. small kh , the ratio S behaves as
lim
k
h
↓
0
S
=
3
4
k
a
(
k
h
)
3
,
{\displaystyle \lim _{kh\downarrow 0}{\mathcal {S}}={\frac {3}{4}}\,{\frac {ka}{(kh)^{3}}},}
or, in terms of the wave height H = 2a and wavelength λ = 2π / k :
lim
k
h
↓
0
S
=
3
32
π
2
H
λ
2
h
3
=
3
32
π
2
U
,
{\displaystyle \lim _{kh\downarrow 0}{\mathcal {S}}={\frac {3}{32\,\pi ^{2}}}\,{\frac {H\,\lambda ^{2}}{h^{3}}}={\frac {3}{32\,\pi ^{2}}}\,{\mathcal {U}},}
with
U
≡
H
λ
2
h
3
.
{\displaystyle {\mathcal {U}}\equiv {\frac {H\,\lambda ^{2}}{h^{3}}}.}
^ Dingemans, M.W. (1997), "Water wave propagation over uneven bottoms", NASA Sti/Recon Technical Report N , Advanced Series on Ocean Engineering, 13 : 171–184, §2.8, Bibcode :1985STIN...8525769K , ISBN 978-981-02-0427-3 , OCLC 36126836
^ Whitham (1974 , pp. 471–476, §13.13) harvtxt error: no target: CITEREFWhitham1974 (help )
^ Dingemans, M.W. (1997), "Water wave propagation over uneven bottoms", NASA Sti/Recon Technical Report N , Advanced Series on Ocean Engineering, 13 : 171–184, §2.8, Bibcode :1985STIN...8525769K , ISBN 978-981-02-0427-3 , OCLC 36126836