From Wikipedia, the free encyclopedia
Solving Cubic Equations
[edit]
The two plans for solving a cubic equation give what looks like two different solutions. In both plans the formulas for P, Q, R, and S are the same.
Starting from
![{\displaystyle P={\frac {3b-a^{2}}{3}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/6936baa85ba7fdf6095d2da44787ace7e01aeb73)
![{\displaystyle Q={\frac {9ab-27c-2a^{3}}{27}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/51c8fddd1b5a992ce888342183f0d57f66cd03f8)
![{\displaystyle R={\frac {Q}{2}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/edfa5481540b5f2ffb82d4348b17fe1245cad31e)
![{\displaystyle S={\frac {P}{3}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/43307bbce0b78de9e02dbe1438e1c502b247aecc)
Cardano's method result is:
![{\displaystyle x={\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}+{\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}-{\frac {a}{3}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/671096c37646a7f0cbada03ee8619ce5bd1b1077)
Vieta's method result is:
![{\displaystyle x={\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}-{\frac {S}{\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}}-{\frac {a}{3}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/dc3d70c97aac8f016b592a3fe9913bc4a463f894)
These two can be shown to be the same if the second terms of each are identical.
- If
![{\displaystyle {\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}=-{\frac {S}{\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/0b6dbe2a9606c4d098f0fb563edd197f0cb9b44f)
Starting with:
![{\displaystyle -{\frac {S}{\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/d0da7e9c1d1460a329e46d6edc6bb4d6723d0ffb)
Multiply by a unit fraction:
![{\displaystyle -{\frac {S}{\sqrt[{3}]{R+{\sqrt {R^{2}+S^{3}}}}}}\cdot {\frac {\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}{\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/127a57558ac31913dbeda3726f71ad6bc085f9b7)
Carry through the sum and difference product in the denominators:
![{\displaystyle {\frac {-S{\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}}{\sqrt[{3}]{R^{2}-(R^{2}+S^{3})}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/ef46eaa3aedcd21322dfe035df301f233d35e835)
Add like terms in the denominator:
![{\displaystyle {\frac {-S{\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}}{\sqrt[{3}]{-S^{3}}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/e8ded439e97e83d8a2e1f12c025d51bf421667da)
Finally cancel like factors in the numerator and the demoninator:
![{\displaystyle {\sqrt[{3}]{R-{\sqrt {R^{2}+S^{3}}}}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/64ef1c23a023b82b928928b39af9a16b658b5ce9)
So the two methods yield the identical results.