Jump to content

User:Leroyjoenoes/Vaccinology/Bibliography

From Wikipedia, the free encyclopedia

Bibbliography

[edit]
      1. Barrett, A. D. T. (2016, July 28). Vaccinology in the twenty-first century. Nature News. Retrieved November 8, 2021, from https://www.nature.com/articles/npjvaccines20169#Sec5.
      2. ^ Jump up to:a b c d e f g h i j k l m n o p q r s Pollard, A. J., & Bijker, E. M. (2020, December 22). A guide to vaccinology: From basic principles to new developments. Nature News. Retrieved November 8, 2021, from https://www.nature.com/articles/s41577-020-00479-7#Sec3.
      3. ^ Jump up to:a b Bekker, L. G. et al. The complex challenges of HIV vaccine development require renewed and expanded global commitment. Lancet 395, 384–388 (2020).
      4. ^ Jump up to:a b Matz, K. M., Marzi, A. & Feldmann, H. Ebola vaccine trials: progress in vaccine safety and immunogenicity. Expert Rev. Vaccines 18, 1229–1242 (2019).
      5. ^ Jump up to:a b Ahmed, S. F., Quadeer, A. A. & McKay, M. R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 12, 254 (2020).
      6. ^ Jump up to:a b Pawelec, G. Age and immunity: what is “immunosenescence”? Exp. Gerontol. 105, 4–9 (2018).
      7. ^ Timens, W., Boes, A., Rozeboom-Uiterwijk, T. & Poppema, S. Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J. Immunol. 143, 3200–3206 (1989).
      8. ^ Jump up to:a b Plans-Rubio, P. The vaccination coverage required to establish herd immunity against influenza viruses. Prev. Med. 55, 72–77 (2012).
      9. ^ Jump up to:a b Trotter, C. L. & Maiden, M. C. Meningococcal vaccines and herd immunity: lessons learned from serogroup C conjugate vaccination programs. Expert. Rev. Vaccines 8, 851–861 (2009)
      10. ^ Larson, H. J. The state of vaccine confidence. Lancet 392, 2244–2246 (2018)
      11. ^ Mitkus, R. J., Hess, M. A. & Schwartz, S. L. Pharmacokinetic modeling as an approach to assessing the safety of residual formaldehyde in infant vaccines. Vaccine 31, 2738–2743 (2013)
      12. ^ Eldred, B. E., Dean, A. J., McGuire, T. M. & Nash, A. L. Vaccine components and constituents: responding to consumer concerns. Med. J. Aust. 184, 170–175 (2006)
      13. ^ Wara, D. W. Host defense against Streptococcus pneumoniae: the role of the spleen. Rev. Infect. Dis. 3, 299–309 (1981).
      14. ^ Patel, M. & Lee, C. K. Polysaccharide vaccines for preventing serogroup A meningococcal meningitis. Cochrane Database Syst. Rev. 3, CD001093 (2005).
      15. ^ Sandmann, F. et al. Infant hospitalisations and fatalities averted by the maternal pertussis vaccination programme in England, 2012–2017: post-implementation economic evaluation. Clin. Infect. Dis. 71, 1984–1987 (2020).
      16. ^ Demicheli, V., Barale, A. & Rivetti, A. Vaccines for women for preventing neonatal tetanus. Cochrane Database Syst. Rev. 7, CD002959 (2015)
      17. ^ Madhi, S. A. et al. Respiratory syncytial virus vaccination during pregnancy and effects in infants. N. Engl. J. Med. 383, 426–439 (2020).
      18. ^ Young, M. K. & Cripps, A. W. Passive immunization for the public health control of communicable diseases: current status in four high-income countries and where to next. Hum. Vaccin. Immunother. 9, 1885–1893 (2013).
      19. ^ Moberley, S., Holden, J., Tatham, D. P. & Andrews, R. M. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst. Rev. 1, CD000422 (2013)
      20. ^ Andrews, N. J. et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect. Dis. 14, 839–846 (2014)
      21. ^ Pollard, A. J., Perrett, K. P. & Beverley, P. C. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 9, 213–220 (2009).
      22. ^ Kourtis, A. P., Read, J. S. & Jamieson, D. J. Pregnancy and infection. N. Engl. J. Med. 370, 2211–2218 (2014).
      23. ^ Malley, R. et al. CD4+ T cells mediate antibodyindependent acquired immunity to pneumococcal colonization. Proc. Natl Acad. Sci. USA 102, 4848–4853 (2005).
      24. ^ World Health Organization. Tetanus vaccines: WHO position paper, February 2017 — recommendations. Vaccine 36, 3573–3575 (2018).
      25. ^ World Health Organization. Diphtheria vaccine: WHO position paper, August 2017 — recommendations. Vaccine 36, 199–201 (2018).
      26. ^ Henry, B. & Baclic, O. & National Advisory Committee on Immunization (NACI). Summary of the NACI update on the recommended use of hepatitis B vaccine. Can. Commun. Dis. Rep. 43, 104–106 (2017).
      27. ^ McVernon, J., Johnson, P. D., Pollard, A. J., Slack, M. P. & Moxon, E. R. Immunologic memory in Haemophilus influenzae type b conjugate vaccine failure. Arch. Dis. Child. 88, 379–383 (2003).
      28. ^ McVernon, J. et al. Immunologic memory with no detectable bactericidal antibody response to a first dose of meningococcal serogroup C conjugate vaccine at four years. Pediatr. Infect. Dis. J. 22, 659–661 (2003).
      29. ^ Paunio, M. et al. Twice vaccinated recipients are better protected against epidemic measles than are single dose recipients of measles containing vaccine. J. Epidemiol. Community Health 53, 173–178 (1999).
      30. ^ Statista Research Department. Herd immunity threshold for selected global diseases as of 2013. Statista https://www.statista.com/statistics/348750/+threshold-for-herd-immunity-for-select-diseases/+(2013).
      31. ^ Plans-Rubio, P. The vaccination coverage required to establish herd immunity against influenza viruses. Prev. Med. 55, 72–77 (2012).
      32. ^ Tabrizi, S. N. et al. Assessment of herd immunity and cross-protection after a human papillomavirus vaccination programme in Australia: a repeat cross-sectional study. Lancet Infect. Dis. 14, 958–966 (2014).
      33. ^ Brisson, M. et al. Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic m
      34. ^ Trunz, B. B., Fine, P. & Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367, 1173–1180 (2006)
      35. ^ Barker, L. & Hussey, G. The Immunological Basis for Immunization Series: Module 5: Tuberculosis (World Health Organization, 2011)
      36. ^ Pollard, A. J., Finn, A. & Curtis, N. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain. Arch. Dis. Child. 102, 1077–1081 (2017).
      37. ^ Mina, M. J., Metcalf, C. J., de Swart, R. L., Osterhaus, A. D. & Grenfell, B. T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 348, 694–699 (2015).
      38. ^ Farrington, P. et al. A new method for active surveillance of adverse events from diphtheria/ tetanus/pertussis and measles/mumps/rubella vaccines. Lancet 345, 567–569 (1995).
      39. ^ Nohynek, H. et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS ONE 7, e33536 (2012).
      40. ^ Miller, E. et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 346, f794 (2013).
      41. ^ Pinto, M. V., Bihari, S. & Snape, M. D. Immunisation of the immunocompromised child. J. Infect. 72 (Suppl), S13–S22 (2016).
      42. ^ Seligman, S. J. Risk groups for yellow fever vaccine-associated viscerotropic disease (YEL-AVD). Vaccine 32, 5769–5775 (2014).
      43. ^ Gellin, B. G., Maibach, E. W. & Marcuse, E. K. Do parents understand immunizations? A national telephone survey. Pediatrics 106, 1097–1102 (2000).
      44. ^ Offit, P. A. et al. Addressing parents’ concerns: do multiple vaccines overwhelm or weaken the infant’s immune system? Pediatrics 109, 124–129 (2002).
      45. ^ Peck, M. et al. Global routine vaccination coverage, 2018. MMWR Morb. Mortal. Wkly. Rep. 68, 937–942 (2019).
      46. ^ World Health Organization. Immunization coverage. WHO https://www.who.int/news-room/fact-sheets/+detail/immunization-coverage+(2020).
      47. ^ World Health Organization. More than 9.4 million children vaccinated against typhoid fever in Sindh. WHO http://www.emro.who.int/pak/pakistan-news/+more-than-94-children-vaccinated-with-typhoidconjugate-vaccine-in-sindh.html+(2019).
      48. ^ Jump up to:a b World Health Organization. Disease outbreaks. WHO https://www.who.int/emergencies/diseases/en/ (2020).
      49. ^ Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).
      50. ^ Fauci, A. S., Marovich, M. A., Dieffenbach, C. W., Hunter, E. & Buchbinder, S. P. Immunology. Immune activation with HIV vaccines. Science 344, 49–51 (2014).
      51. ^ Agnandji, S. T. et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367, 2284–2295 (2012).
      52. ^ Inoue, N., Abe, M., Kobayashi, R. & Yamada, S. Vaccine development for cytomegalovirus. Adv. Exp. Med. Biol. 1045, 271–296 (2018).
      53. ^ Schleiss, M. R., Permar, S. R. & Plotkin, S. A. Progress toward development of a vaccine against congenital cytomegalovirus infection. Clin. Vaccine Immunol. 24, e00268–e00317 (2017).
      54. ^ Koff, W. C. & Schenkelberg, T. The future of vaccine development. Vaccine 38, 4485–4486 (2020).
      55. ^ van Riel, D. & de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 19, 810–812 (2020).
      56. ^ Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2034577 (2020).
      57. ^ Zhang, C., Maruggi, G., Shan, H. & Li, J. Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594 (2019).
      58. ^ Mascola, J. R. & Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 20, 87–88 (2020)
      59. ^ Peyraud, N. et al. Potential use of microarray patches for vaccine delivery in low- and middle-income countries. Vaccine 37, 4427–4434 (2019)