From Wikipedia, the free encyclopedia
Stationary and axisymmetric metric in the co-rotating frame of a rotating body (angular velocity
):
4-velocity of a fluid in the co-rotating frame:
, with
Stress-energy tensor of a fluid in the co-rotating frame:
:
![{\displaystyle T_{\rho \rho }\,=T_{\zeta \zeta }\,=e^{2\mu }p}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/51f48c300a0924cd11597a924297f601a38dd461)
![{\displaystyle T_{\phi \phi }\,={\frac {W^{2}}{e^{2\nu }}}\left({\frac {p+v^{2}\epsilon }{1-v^{2}}}\right)}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/2d32ae0ca1fa4f8be85f3388900d373a7de09c20)
![{\displaystyle T_{\phi t}\,=-Wv\epsilon }](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/8b074dd40ab4effd2520c339e8ad7d36db767391)
![{\displaystyle T_{tt}\,=e^{2\nu }(1-v^{2})\epsilon }](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/27d7c4bf10a8eb54368c9500a6f7e9c1733d117b)