Jump to content

User:Kounelaki.27/Laplacian vector field/Bibliography

From Wikipedia, the free encyclopedia

You will be compiling your bibliography and creating an outline of the changes you will make in this sandbox.


Bibliography

[edit]

Abreu-Blaya, R., et al. "Laplacian decomposition of vector fields on fractal surfaces." Mathematical Methods in the Applied Sciences, vol. 31, no. 7, 2008, pp. 849–857, doi:10.1002/mma.952.[1]

  • This is a peer reviewed science journal, so it is a reputable source. This source can be placed in the applications section of the article.

Abreu-Blaya, R., J. Bory-Reyes, and M. Shapiro. "On the Laplacian vector fields theory in domains with rectifiable boundary." Mathematical Methods in the Applied Sciences, vol. 29, no. 15, 2006, pp. 1861–1881, https://doi.org/10.1002/mma.758.[2]

  • This is a peer reviewed science journal and is reputable. This source will be used in the applications section.

Bidabad, Behroz, and Ahmad M. Mir. "Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry.", vol. 360, 2022, pp. 1193–1204, doi:10.5802/crmath.287.[3]

  • This is peer reviewed and reputable. This source will be used in the applications section.

Brennen, Christopher E. "Incompressible, Inviscid, Irrotational Flow." Internet Book on Fluid Dynamics, 2004, http://www.brennen.caltech.edu/FLUIDBOOK/basicfluiddynamics/potentialflow.htm.[4]

  • This is a very good online textbook written by a professor at Cal Tech, Christopher E Brennen. He explains what it means for a vector field to be incompressible and irrotational, and I plan to replace it as the citation for the first sentence.

Choi, Hon F., and Silvia S. Blemker. "Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation." PLoS ONE, vol. 8, no. 10, 2013, pp. 1–7. EBSCOhost; Academic Search Premier, doi: 10.1371/journal.pone.0077576.[5]

  • Reputable and peer reviewed, will be used in medical applications section.

Claycomb, J. L. "Vector Calculus." Mathematical Methods for Physics: Using MATLAB and Maple. Mercury Learning & Information, 2018.[6]

  • Great book chapter, explains the properties of a Vector Laplacian in more depth, and I plan to use this source when elaborating on its properties.

Contreras, Ivan, and Andrew Tawfeek. "On Discrete Gradient Vector Fields and Laplacians of Simplicial Complexes." Annals of Combinatorics, vol. 28, no. 1, 2024, pp. 67–91, doi:10.1007/s00026-023-00655-1.[7]

  • Peer-reviewed, reputable. Plan to use in applications section.

González-Campos, Daniel, Marco A. Pérez-de la Rosa, and Juan Bory-Reyes. "Generalized Laplacian decomposition of vector fields on fractal surfaces." Journal of Mathematical Analysis and Applications, vol. 499, no. 2, 2021, pp. 125038, doi:10.1016/j.jmaa.2021.125038.[8]

  • Peer-reviewed, reputable. Plan to use in applications section (how Laplacian vectors are being used in science).

González-Cervantes, J. O., and Juan Bory-Reyes. "On Bergman spaces induced by a v-Laplacian vector fields theory." Journal of Mathematical Analysis and Applications, vol. 505, no. 2, 2022, pp. 125523, doi:10.1016/j.jmaa.2021.125523.[9]

  • Peer-reviewed, reputable. Plan to use in applications section, how Laplacian vecotors are being used in science.

Techet, A. H. "2.016 Hydrodynamics: Potential Flow Theory.", 2005, https://ocw.mit.edu/courses/2-016-hydrodynamics-13-012-fall-2005/resources/2005reading4/.[10]

  • Amazing notes, will use in section of application for physics. This source also contains proofs for the vector properties that I plan to cite. This source is reputable because it comes from the materials of a MIT professor.

Edit this section to compile the bibliography for your Wikipedia assignment. Add the name and/or notes about what each source covers, then use the "Cite" button to generate the citation for that source.

References

[edit]
  1. ^ Abreu-Blaya, R; Bory-Reyes, J; Moreno-García, T; Peña-Peña, D (August 30, 2007). "Laplacian decomposition of vector fields on fractal surfaces". Mathematical Methods in the Applied Sciences. 31 (7): 849–57. doi:10.1002/mma.952 – via Wiley Online Library.
  2. ^ Abreu-Blaya, R; Bory-Reyes, J; Shapiro, M (June 27, 2006). "On the Laplacian vector fields theory in domains with rectifiable boundary". Mathematical Methods in the Applied Sciences. 29 (15): 1861–81. doi:10.1002/mma.758 – via Wiley Online Library.
  3. ^ Bidabad, Behroz; Mirshafeazadeh, Mir Ahmad (December 8, 2022). "Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry". Comptes Rendus. Mathématique. 360: 1193–204. doi:10.5802/crmath.287.
  4. ^ Brennen, Christopher E (2004). "Incompressible, Inviscid, Irrotational Flow". Internet Book on Fluid Dynamics. Retrieved November 20, 2024.
  5. ^ Choi, Hon Fai; Blemker, Silvia S (October 25, 2013). "Skeletal muscle fascicle arrangements can be reconstructed using a Laplacian vector field simulation". PLOS ONE. 8 (10): e77576. doi:10.1371/journal.pone.0077576.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ Claycomb, James R. (2018). Mathematical methods for physics: using Maple & MATLAB. Dulles, Virginia Boston, Massachusetts New Delhi: Mercury Learning and Information. ISBN 978-1-68392-098-4.
  7. ^ Contreras, Ivan; Tawfeek, Andrew (May 30, 2023). "On discrete gradient vector fields and Laplacians of simple complexes". Annals of Combinatorics. 28: 67–91. doi:10.1007/s00026-023-00655-1 – via Springer Nature Link.
  8. ^ González-Campos, Daniel; Pérez-de la Rosa, Marco Antonio; Bory-Reyes, Juan (2021-07-15). "Generalized Laplacian decomposition of vector fields on fractal surfaces". Journal of Mathematical Analysis and Applications. 499 (2): 125038. doi:10.1016/j.jmaa.2021.125038 – via Elsevier Science Direct.
  9. ^ González-Cervantes, J. Oscar; Bory-Reyes, Juan (2022-01-15). "On Bergman spaces induced by a v-Laplacian vector fields theory". Journal of Mathematical Analysis and Applications. 505 (2): 125523. doi:10.1016/j.jmaa.2021.125523 – via Elsevier Science Direct.
  10. ^ Techet, Alexandra (2005). "Hydrodynamics (13.012): 2005reading4". MIT OpenCourseWare. Retrieved November 20, 2024.

Outline of proposed changes

[edit]

Click on the edit button to draft your outline.