User:J47211/Bhatia–Davis inequality
This is the sandbox page where you will draft your initial Wikipedia contribution.
If you're starting a new article, you can develop it here until it's ready to go live. If you're working on improvements to an existing article, copy only one section at a time of the article to this sandbox to work on, and be sure to use an edit summary linking to the article you copied from. Do not copy over the entire article. You can find additional instructions here. Remember to save your work regularly using the "Publish page" button. (It just means 'save'; it will still be in the sandbox.) You can add bold formatting to your additions to differentiate them from existing content. |
Statement
[edit]Let m and M be the lower and upper bounds, respectively, for a set of real numbers a1, ..., an , with a particular probability distribution. Let μ be the expected value of this distribution.
Then the Bhatia–Davis inequality states:
Equality holds if and only if every aj in the set of values is equal either to M or to m with probability one[1].
Extensions of the Bhatia–Davis inequality
[edit]If is a positive and unital linear mapping of a C* -algebra into a C* -algebra , and A is a self-adjoint element of satisfying m A M, then:
.
If is a discrete random variable such that
where , then:
,
where and .
Comparisons to other inequalities
[edit]... The Bhatia–Davis inequality is stronger than Popoviciu's inequality on variances as can be seen from the conditions for equality. Equality holds in Popoviciu's inequality if and only if half of the aj are equal to the upper bounds and half of the aj are are equal to the lower bounds. Additionally, Sharma[2] has made further refinements on the Bhatia–Davis inequality.
See also
[edit]...
Popoviciu's inequality on variances
References
[edit]- ^ Bhatia, Rajendra; Davis, Chandler (2000). "A Better Bound on the Variance". The American Mathematical Monthly. 107 (4): 353–357. doi:10.1080/00029890.2000.12005203. ISSN 0002-9890.
- ^ Sharma, Rajesh (2008). "Some more inequalities for arithmetic mean, harmonic mean and variance". Journal of Mathematical Inequalities (1): 109–114. doi:10.7153/jmi-02-11. ISSN 1846-579X.