User:Hamster-baldwin/sandbox
\begin{document} \maketitle
$\frac{e}{on/off}=mc^2
$$
$e=\frac{m}{on/off}c^2
$$
To be clear; on/off is a literal referance to computational on switches divided by computational off switches.
$$
$e2=(\frac{\frac{m}{3}}{m_e}+\frac{\frac{m}{3}}{m_p}+\frac{\frac{m}{3}}{m_n})\hbar[\frac{h(\frac{c}{2\pi5.35317245x10^-11})^4}{c^2}]
$$
$m2=\frac{[(\frac{\frac{m}{3}}{m_e}+\frac{\frac{m}{3}}{m_p}+\frac{\frac{m}{3}}{m_n})2\frac{2Gm}{c^2}][\frac{h^2(\frac{c}{2\pi5.35317245x10^-11})^4}{c^2}]}{[\frac{G8\pi}{[\frac{1}{(2c^2)}]}]}
$$
$m2=\frac{[(\frac{\frac{m}{3}}{m_e}+\frac{\frac{m}{3}}{m_p}+\frac{\frac{m}{3}}{m_n})2\frac{2Gm}{c^2}][\frac{h^2(\frac{c}{2\pi9.26875894x10^-7})^4}{c^2}]}{[{G8\pi}]}
$$
$m2=(\frac{\frac{m}{3}}{m_e}+\frac{\frac{m}{3}}{m_p}+\frac{\frac{m}{3}}{m_n})\hbar[\frac{h(\frac{c}{2\pi9.26875894x10^-7})^4}{c^2}]
$$
Electrostatic acceleration of small masses;
$$
$f=ma
$$
Let l_p$ represent the Planck Mass, and cl_p$ represent c times the planck mass.
$$
$2c^2=(\frac{\frac{m}{3}}{m_e}+\frac{\frac{cl_p140.938613}{3}}{m_p}+\frac{\frac{cl_p140.938613}{3}}{m_n})\hbar[\frac{h(\frac{c}{2\pi5.35317245x10^-11})^4}{c^2}]
$$
$cl_p140.938613=0.00000306781079
$$
Let $m_p_na$ represent the acceleration of the protons and neutrons (for teleportation).
$$
$m_p_na=c\frac{\frac{2G(cl_p140.938613)}{c^2}}{[\frac{2Gm}{c^2}]}
$$
Teleportation; the electron masses contain two of the entire masses of the object.
$$
$m4=\frac{\frac{(\frac{\frac{m}{3}}{m_e}+\frac{\frac{c[\frac{\frac{2G(cl_p140.938613)}{c^2}}{[\frac{2Gm}{c^2}]}]}{3}}{m_p}+\frac{\frac{c[\frac{\frac{2G(cl_p140.938613)}{c^2}}{[\frac{2Gm}{c^2}]}]}{3}}{m_n})\hbar[\frac{h(\frac{c}{2\pi9.720723344x10^-12})^4}{c^2}]}{2c^2}}{m_e}
$$
$6=\frac{(\frac{1}{m_p}+\frac{1}{m_n})\hbar[\frac{h(\frac{c}{2\pi9.720723344x10^-12})^4}{c^2}]}{c^2}
$$
$e2=(m/3/m_e)/[1/(m_ec^2)/6]
$$
$Cpu Hz=\frac{c}{r\pi2}
$$
The Bohr Radius (r_0)$ of hydrogen 5.29177210903x10^-11$ meters
was modified (r_m)$ in this theory to 5.35317245x10^-11$ meters
because hydrogen didn't carry sufficent charge for computation.
$$
$ Duk-Ro
$$
I regret that I would be lying if I had said I had found a physical or technical solution to the Hubbert Peak, yet it was worth noting so I have done so.
$$
https://wiki.riteme.site/wiki/Hubbert\_peak\_theory
$$
Bradley William Busch
\end{document}