Jump to content

User:Francishunger

From Wikipedia, the free encyclopedia

This page collects recent academic papers (from the humanities) on generative AI to make it available to Wikipedia Editors for the wikipedia project 'AI Cleanup' https://wiki.riteme.site/wiki/Wikipedia:WikiProject_AI_Cleanup

Image Chiang, Ted. 2023. “ChatGPT Is a Blurry JPEG of the Web.” The New Yorker, February 9, 2023. https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web.

Ball, Philip. 2023. “Is AI Leading to a Reproducibility Crisis in Science?” Nature 624 (7990): 22–25. https://doi.org/10.1038/d41586-023-03817-6.

Meyer, Roland. 2022. “Im Bildraum von Big Data. Unwahrscheinliche Und Unvorhergesehene Suchkommandos: Über Dall-E 2.” Cargo, no. 55, 50–53.

Cetinić, Eva. 2022. “The Myth of Culturally Agnostic AI Models.” https://doi.org/10.48550/arXiv.2211.15271.

Birhane, Abeba, Vinay Uday Prabhu, and Emmanuel Kahembwe. 2021. “Multimodal Datasets: Misogyny, Pornography, and Malignant Stereotypes.” arXiv. https://doi.org/10.48550/arXiv.2110.01963.

Pereira, Gabriel, and Bruno Moreschi. 2020. “Artificial Intelligence and Institutional Critique 20 – Unexpected Ways of Seeing with Computer Vision.” AI & SOCIETY, September. https://doi.org/10.1007/s00146-020-01059-y.

Offert, Fabian, and Peter Bell. 2020. “Perceptual Bias and Technical Metapictures – Critical Machine Vision as a Humanities Challenge.” AI & SOCIETY, October. https://doi.org/10.1007/s00146-020-01058-z.

Harvey, Adam, and Julien LaPlace. 2019. “MegaPixels – Origins and Endpoints of Biometric Datasets »In the Wild«.” Website. 2019. https://megapixels.cc.

Steyerl, Hito. 2018. “A Sea of Data – Pattern Recognition and Corporate Animism (Forked Version).” In Pattern Discrimination, edited by Wendy Hui Kyong Chun, Florian Cramer, Clemens Apprich, and Hito Steyerl, 1–21. Lüneburg: Meson Press.

Chun, Wendy Hui Kyong. 2018. “Queerying Homophily.” In Pattern Discrimination, edited by Hito Steyerl, Wendy Hui Kyong Chun, Florian Cramer, and Clemens Apprich, 59–98. Lüneburg: Meson Press.



Language Birhane, Abeba, and Marek McGann. 2024. “Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency.” arXiv. http://arxiv.org/abs/2407.08790.

Anderson, Ross, Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, and Nicolas Papernot. 2023. “The Curse of Recursion – Training on Generated Data Makes Models Forget.” arXiv. https://doi.org/10.48550/arXiv.2305.17493.

Luitse, Dieuwertje, and Wiebke Denkena. 2021. “The Great Transformer – Examining the Role of Large Language Models in the Political Economy of Ai.” Big Data & Society 8 (2): 1–14. https://doi.org/10.1177/20539517211047734.

Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. “On the Dangers of Stochastic Parrots – Can Language Models Be Too Big?” In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–23. Virtual Event Canada: ACM. https://doi.org/10.1145/3442188.3445922.

Carlini, Nicholas, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. 2023. “Poisoning Web-Scale Training Datasets Is Practical.” arXiv. https://doi.org/10.48550/arXiv.2302.10149.