User:Eps ARM/Mud volcano
This is the sandbox page where you will draft your initial Wikipedia contribution.
If you're starting a new article, you can develop it here until it's ready to go live. If you're working on improvements to an existing article, copy only one section at a time of the article to this sandbox to work on, and be sure to use an edit summary linking to the article you copied from. Do not copy over the entire article. You can find additional instructions here. Remember to save your work regularly using the "Publish page" button. (It just means 'save'; it will still be in the sandbox.) You can add bold formatting to your additions to differentiate them from existing content. |
Article Draft
[edit]Emissions
[edit]Deep Sea Mud Volcanoes
Mud volcanoes are regularly found along the subsurface seafloor, they are primarily responsible for releasing methane into the water column along with other gases and fluids. The high pressure and low temperature associated with the bottom of the seafloor, can be the predominant cause of why gases and fluids get trapped that are rising upward, this is a result of methane oversaturation. The total methane emission of offshore mud volcanoes is about 27 Tg per year.[1] This estimate does come with uncertainties, such as the total number of mud volcanoes and their release of methane into the atmostphere/water column is unknown.
Surface Mud Volcanoes
Most liquid and solid material is released during eruptions, but seeps occur during dormant periods. The chemical composition of mud volcanoes is almost entirely methane and hydrocarbons found within the mud and the shale from the mud volcanoes.[2] The emissions from mud volcanoes can be entirely dependent on its location, mud volcanoes from NW China are more enriched with with methane and have completly lower concentrations of propane and ethane.[3] The origin of the gas is most likely from below 5000m[4] in the Earth's crust.
The mud is rich in halite (salt rock).[citation needed] The overall chemical composition of mud volcanoes is similar to normal magma concentrations. The content of the mud volcano from Kampun Meritam, Limbang are 59.51[3] weight percent (wt. %) SiO2, 0.055 wt.% MnO, and 1.84 wt.% MgO.
First-order estimates of mud volcano emissions have been made (1 Tg = 1 million metric tonnes).
- 2002: L. I. Dimitrov estimated that 10.2–12.6 Tg/yr of methane is released from onshore and shallow offshore mud volcanoes.
- 2002: Etiope and Klusman estimated at least 1–2 and as much as 10–20 Tg/yr of methane may be emitted from onshore mud volcanoes.
- 2003: Etiope, in an estimate based on 120 mud volcanoes: "The emission results to be conservatively between 5 and 9 Tg/yr, that is 3–6% of the natural methane sources officially considered in the atmospheric methane budget. The total geologic source, including MVs (this work), seepage from seafloor (Kvenvolden et al., 2001), microseepage in hydrocarbon-prone areas and geothermal sources (Etiope and Klusman, 2002), would amount to 35–45 Tg/yr."
- 2003: analysis by Milkov et al. suggests that the global gas flux may be as high as 33 Tg/yr (15.9 Tg/yr during quiescent periods plus 17.1 Tg/yr during eruptions). Six teragrams per year of greenhouse gases are from onshore and shallow offshore mud volcanoes. Deep-water sources may emit 27 Tg/yr. Total may be 9% of fossil CH4 missing in the modern atmospheric CH4 budget, and 12% in the preindustrial budget.
- 2003: Alexei Milkov estimated approximately 30.5 Tg/yr of gases (mainly methane and CO2) may escape from mud volcanoes to the atmosphere and the ocean.
- 2003: Achim J. Kopf estimated 1.97×1011 to 1.23×1014 m³ of methane is released by all mud volcanoes per year, of which 4.66×107 to 3.28×1011 m³ is from surface volcanoes. That converts to 141–88,000 Tg/yr from all mud volcanoes, of which 0.033–235 Tg is from surface volcanoes.
References
[edit]Feseker, T., Boetius, A., Wenzhöfer, F. et al. Eruption of a deep-sea mud volcano triggers rapid sediment movement. Nat Commun 5, 5385 (2014). https://doi.org/10.1038/ncomms6385
- ^ Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk (2014-11-11). "Eruption of a deep-sea mud volcano triggers rapid sediment movement". Nature Communications. 5 (1): 5385. doi:10.1038/ncomms6385. ISSN 2041-1723. PMC 4242465. PMID 25384354.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Yussibnosh, Jossiana binti; Mohan Viswanathan, Prasanna; Modon Valappil, Ninu Krishnan (2023-06-01). "Geochemical evaluation of mud volcanic sediment and water in Northern Borneo: A baseline study". Total Environment Research Themes. 6: 100033. doi:10.1016/j.totert.2023.100033. ISSN 2772-8099.
- ^ a b Xu, Wang; Zheng, Guodong; Ma, Xiangxian; Fortin, Danielle; Fu, Ching Chou; Li, Qi; Chelnokov, Georgy Alekseevich; Ershov, Valery (2022-01-01). "Chemical and isotopic features of seepage gas from mud volcanoes in southern margin of the Junggar Basin, NW China". Applied Geochemistry. 136: 105145. doi:10.1016/j.apgeochem.2021.105145. ISSN 0883-2927.
- ^ Deville, E.; Battani, A.; Griboulard, R.; Guerlais, S.; Herbin, J.P.; Houzay, J.P.; Muller, C.; Prinzhofer, A. (2003-01-01). "The origin and processes of mud volcanism: new insights from Trinidad". Geological Society, London, Special Publications. 216 (1): 475–490. doi:10.1144/GSL.SP.2003.216.01.31. ISSN 0305-8719.