This is my own sandbox, and my first subdirectory, I hope I did it right :)
This is
the user sandbox of Efitu . A user sandbox is a subpage of the user's
user page . It serves as a testing spot and page development space for the user and is
not an encyclopedia article .
Create or edit your own sandbox here . Other sandboxes: Main sandbox | Template sandbox
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
This is a complex mathmatical formula:
x
1
,
2
∑
m
=
2534
∞
∑
y
=
63
f
i
n
i
t
y
m
2
n
3
m
(
m
3
n
+
n
3
m
)
+
ϕ
n
(
κ
)
=
1
4
π
2
κ
2
∫
0
∞
sin
(
κ
R
)
κ
R
∂
∂
L
[
R
2
∂
D
n
(
R
)
∂
C
]
d
R
−
b
±
b
2
−
4
a
c
2
a
κ
−
11
/
3
f
(
x
)
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
=
∑
n
=
0
∞
(
a
1
)
n
⋅
⋅
⋅
(
a
p
)
n
(
c
4
2
)
n
⋅
⋅
⋅
(
c
q
)
n
=
,
1
L
0
≪
κ
∂
∂
R
[
R
2
∂
D
n
(
R
)
∂
R
]
d
R
d
x
∂
∂
R
[
R
α
∂
D
n
(
R
)
∂
R
]
=
∑
n
=
0
∞
d
R
x
1
,
2
l
l
1
l
0
x
1
,
2
=
−
b
±
b
2
−
4
a
c
2
a
lim
n
→
∞
x
n
>
∞
5050
z
n
n
!
1
+
2
+
⋯
+
100
⏞
ϕ
n
(
γ
)
=
1
4
π
2
κ
2
∫
0
6
66
sin
(
κ
R
)
,
d
R
{
1
−
1
≤
x
<
0
1
2
x
=
0
x
0
<
x
≤
1
∂
∂
R
[
R
2
∂
D
n
(
R
)
∂
R
]
κ
R
ϕ
n
(
π
)
=
0.033
C
n
2
∫
−
N
N
e
x
ϕ
n
(
ω
)
=
1
4
π
2
κ
2
∫
0
∞
sin
(
κ
R
)
κ
R
∑
m
=
1
∞
∑
n
=
1
∞
m
2
n
3
m
(
m
3
n
+
n
3
m
)
+
ϕ
n
(
κ
)
lim
n
→
∞
x
n
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
(
a
1
)
n
⋅
⋅
⋅
(
a
p
)
n
(
c
1
)
n
⋅
⋅
⋅
(
c
q
)
n
z
n
n
!
x
1
,
2
∑
m
=
1
∞
∑
n
=
1
∞
m
2
n
3
m
(
m
3
n
+
n
3
m
)
+
ϕ
n
(
κ
)
=
1
4
π
2
κ
2
∫
0
∞
sin
(
κ
R
)
cosh
h
,
d
R
{
1
−
1
≤
x
<
0
1
2
x
=
0
x
0
<
x
≤
1
∂
∂
R
[
R
2
∂
D
n
(
R
)
∂
R
]
κ
R
ϕ
n
(
π
)
+
0.033
C
n
2
∫
−
N
N
e
x
ϕ
n
(
ω
)
=
1
4
π
2
κ
2
∫
0
∞
sin
(
κ
N
)
κ
R
sin
(
κ
R
)
κ
R
∂
∂
L
[
R
2
∂
D
n
(
R
)
∂
C
]
d
R
−
b
±
b
2
−
4
a
c
2
a
κ
−
11
/
3
f
(
x
)
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
=
∑
n
=
0
∞
(
a
1
)
n
⋅
⋅
⋅
(
a
p
)
n
(
c
4
2
)
n
⋅
⋅
⋅
(
c
q
)
n
=
,
1
L
0
≪
κ
∂
∂
R
[
R
2
∂
D
n
(
R
)
∂
R
]
d
R
d
x
356
∂
R
[
R
α
∂
D
n
(
R
)
∂
R
]
=
∑
n
=
0
∞
S
P
F
−
30
d
R
x
1
,
2
l
l
1
l
0
x
1
,
2
=
−
b
±
b
2
−
4
a
c
2
a
lim
n
→
∞
x
n
>
∞
5050
a
+
b
+
⋯
+
z
⏟
26
z
n
n
!
1
+
J
♣
+
2
+
⋯
+
100
⏞
ϕ
n
(
γ
)
=
1
4
π
2
κ
2
x
′
,
y
″
,
f
′
,
f
″
∫
0
6
66
∑
β
=
77
∞
∑
n
=
1
∞
m
2
n
3
m
(
m
3
n
+
n
3
m
)
+
ϕ
n
(
κ
)
lim
n
→
∞
x
n
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
lim
n
→
∞
x
n
(
a
1
)
n
⋅
⋅
⋅
(
a
p
)
y
(
c
1
)
n
⋅
⋅
⋅
(
c
q
)
n
z
n
n
!
{\displaystyle x_{1,2}\sum _{m=2534}^{\infty }\sum _{y=63}^{f}inity{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}+\phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial L}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial C}}\right]\,dR{\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}\kappa ^{-11/3}f(x){}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{n}}{(c_{4}2)_{n}\cdot \cdot \cdot (c_{q})_{n}}}\,=,\quad {\frac {1}{L_{0}}}\ll \kappa \ {\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dRdx{\frac {\partial }{\partial R}}\left[R^{\alpha }{\frac {\partial D_{n}(R)}{\partial R}}\right]\ =\sum _{n=0}^{\infty }dRx_{1,2}ll{\frac {1}{l_{0}}}\,x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}{\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}>\infty {\begin{matrix}5050\\{\frac {z^{n}}{n!}}\overbrace {1+2+\cdots +100} \end{matrix}}\phi _{n}(\gamma )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{6}66{\frac {\sin(\kappa R)}{,}}dR{\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\x&0<x\leq 1\end{cases}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,{\kappa R}\phi _{n}(\pi )=0.033C_{n}^{2}\int _{-N}^{N}e^{x}\,\phi _{n}(\omega )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}+\phi _{n}(\kappa ){\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}{}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z){\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{n}}{(c_{1})_{n}\cdot \cdot \cdot (c_{q})_{n}}}{\frac {z^{n}}{n!}}\,x_{1,2}\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}+\phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\cosh }}h,dR{\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\x&0<x\leq 1\end{cases}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,{\kappa R}\phi _{n}(\pi )+0.033C_{n}^{2}\int _{-N}^{N}e^{x}\,\phi _{n}(\omega )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa N)}{\kappa R}}{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial L}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial C}}\right]\,dR{\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}\kappa ^{-11/3}f(x){}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{n}}{(c_{4}2)_{n}\cdot \cdot \cdot (c_{q})_{n}}}\,=,\quad {\frac {1}{L_{0}}}\ll \kappa \ {\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dRdx{\frac {356}{\partial R}}\left[R^{\alpha }{\frac {\partial D_{n}(R)}{\partial R}}\right]\ =\sum _{n=0}^{\infty }SPF-30dRx_{1,2}ll{\frac {1}{l_{0}}}\,x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}{\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}>\infty {\begin{matrix}5050\\{\begin{matrix}\underbrace {a+b+\cdots +z} \\26\end{matrix}}{\frac {z^{n}}{n!}}\overbrace {1+J\clubsuit +2+\cdots +100} \end{matrix}}\phi _{n}(\gamma )={\frac {1}{4\pi ^{2}\kappa ^{2}}}x',y'',f',f''\!\int _{0}^{6}66\sum _{\beta =77}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}+\phi _{n}(\kappa ){\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}{}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)\lim _{n\to \infty }x_{n}{\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{y}}{(c_{1})_{n}\cdot \cdot \cdot (c_{q})_{n}}}{\frac {z^{n}}{n!}}\,}
Now for your math homework![ edit ]
1. Refering to
∞
m
2
n
3
m
(
m
3
n
+
n
3
m
)
+
ϕ
n
(
κ
)
lim
n
→
∞
x
n
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
{\displaystyle \infty {\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}+\phi _{n}(\kappa ){\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}{}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)}
evaluate the value of
ϕ
n
(
κ
)
{\displaystyle \phi _{n}(\kappa )\,}
2. If
κ
7
≠
ω
{\displaystyle \kappa _{7}\neq \omega }
what is the value of
∞
α
Σ
π
{\displaystyle {\frac {\infty ^{\alpha }}{\Sigma \pi }}}
3. There is no number 3
4. If
lim
n
→
∞
x
n
p
F
q
(
a
1
,
.
.
.
,
a
p
;
c
1
,
.
.
.
,
c
q
;
z
)
{\displaystyle {\begin{matrix}\lim _{n\to \infty }x_{n}\end{matrix}}{}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)}
, what is the value, considering
Σ
>
1
4
π
2
κ
2
{\displaystyle \Sigma >{\frac {1}{4\pi ^{2}\kappa ^{2}}}}
Math homework awnsers
1.
κ
=
33
{\displaystyle \kappa =33\,}
2.
κ
7
=
Σ
6
{\displaystyle \kappa _{7}=\Sigma 6\,}
3.
e
=
m
c
2
{\displaystyle e=mc^{2}\,}
4.
lim
n
→
∞
x
n
{\displaystyle \lim _{n\to \infty }x_{n}}
{{endspoiler}}
e=mc2
werwer
e=mc5