From Wikipedia, the free encyclopedia
This is a Wiki pedia user page . This is not an encyclopedia article or the talk page for an encyclopedia article. If you find this page on any site other than Wiki pedia , you are viewing a mirror site . Be aware that the page may be outdated and that the user in whose space this page is located may have no personal affiliation with any site other than Wiki pedia . The original page is located at https://en.wiki pedia.org/wi ki/User:DeanFerreyra/Sandbox .
1
−
e
2
{\displaystyle {\sqrt {1-e^{2}}}}
P
(
E
)
=
(
n
k
)
p
k
(
1
−
p
)
n
−
k
{\displaystyle P(E)={n \choose k}p^{k}(1-p)^{n-k}}
(
∑
k
=
1
n
a
k
b
k
)
2
≤
(
∑
k
=
1
n
a
k
2
)
(
∑
k
=
1
n
b
k
2
)
{\displaystyle \left(\sum _{k=1}^{n}a_{k}b_{k}\right)^{2}\leq \left(\sum _{k=1}^{n}a_{k}^{2}\right)\left(\sum _{k=1}^{n}b_{k}^{2}\right)}
x
˙
=
σ
(
y
−
x
)
y
˙
=
ρ
x
−
y
−
x
z
z
˙
=
−
β
z
+
x
y
{\displaystyle {\begin{aligned}{\dot {x}}&=\sigma (y-x)\\{\dot {y}}&=\rho x-y-xz\\{\dot {z}}&=-\beta z+xy\end{aligned}}\,\!}
∇
×
B
→
−
1
c
∂
E
→
∂
t
=
4
π
c
j
→
∇
⋅
E
→
=
4
π
ρ
∇
×
E
→
+
1
c
∂
B
→
∂
t
=
0
→
∇
⋅
B
→
=
0
{\displaystyle {\begin{aligned}\nabla \times {\vec {\mathbf {B} }}-\,{\frac {1}{c}}\,{\frac {\partial {\vec {\mathbf {E} }}}{\partial t}}&={\frac {4\pi }{c}}{\vec {\mathbf {j} }}\\\nabla \cdot {\vec {\mathbf {E} }}&=4\pi \rho \\\nabla \times {\vec {\mathbf {E} }}\,+\,{\frac {1}{c}}\,{\frac {\partial {\vec {\mathbf {B} }}}{\partial t}}&={\vec {\mathbf {0} }}\\\nabla \cdot {\vec {\mathbf {B} }}&=0\end{aligned}}\,\!}
1
(
ϕ
5
−
ϕ
)
e
2
5
π
=
1
+
e
−
2
π
1
+
e
−
4
π
1
+
e
−
6
π
1
+
e
−
8
π
1
+
…
{\displaystyle {\frac {1}{{\Bigl (}{\sqrt {\phi {\sqrt {5}}}}-\phi {\Bigr )}e^{{\frac {2}{5}}\pi }}}=1+{\frac {e^{-2\pi }}{1+{\frac {e^{-4\pi }}{1+{\frac {e^{-6\pi }}{1+{\frac {e^{-8\pi }}{1+\ldots }}}}}}}}\,\!}
V
1
×
V
2
=
|
i
j
k
∂
X
∂
u
∂
Y
∂
u
0
∂
X
∂
v
∂
Y
∂
v
0
|
{\displaystyle \mathbf {V} _{1}\times \mathbf {V} _{2}={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial X}{\partial u}}&{\frac {\partial Y}{\partial u}}&0\\{\frac {\partial X}{\partial v}}&{\frac {\partial Y}{\partial v}}&0\end{vmatrix}}\,\!}