User:DKamal1229/sandbox
Transmembrane Protein 179 is a protein that in humans is encoded by the TMEM179 gene.[1] The function of Transmembrane Protein 179 is not yet well understood, but it is believed to have a function in the nervous system.[2]
Gene
[edit]In humans, TMEM179 is located on the long arm of chromosome 14 on the reverse strand and maps to 14q32.33 with the genomic sequence starting at 104,592,993 bp and ending at 104,604,983 bp.[1][3] Alternative names for this gene are "C14orf90" and "FLJ42486"[4][5] TMEM179 contains four exons.[6]
mRNA
[edit]There are four isoforms of the TMEM179 protein due to alternative splicing of the pre mRNA transcript.[1]
Protein
[edit]Transmembrane Protein 179 is 233 amino acids long.[4] Transmembrane Protein 179 has a predicted molecular weight of 26 kDa and a predicted isoelectric point of 5.[7] Both the Homo sapiens and Xenopus laevis proteins contain a much higher than normal level of
phenylalanine, a higher than normal level of leucine and tryptophan, and a lower than normal level of proline compared to other proteins from their respective organisms.[8] Both the human and frog proteins have the repetitive structure of “LAFL” appearing twice in their protein which suggests that this repetitive sequence may have some significance.[8]
Isoform Name | Size (AA) | Exons used | Accession Number |
---|---|---|---|
Transmembrane Protein 179 Isoform 1 | 233 | 1,2,3,& 4 | NP_001273318.1 |
Transmembrane Protein 179 Isoform 2 | 174 | 1,2,& 3 | NP_001273319.1 |
Transmembrane Protein 179 Isoform 3 | 102 | 1 | XP_011535048.1 |
Transmembrane Protein 179 Isoform 4 | 131 | 2,3,& 4 | XP_011535052.1 |
Subcellular location
[edit]Transmembrane Protein 179 is predicted to be localized to the endoplasmic reticulum(ER).[9]
Structure
[edit]Transmembrane Protein 179 is predicted to have four transmembrane regions with the N-terminus located on the cytosol side of the membrane.[10] The secondary structure of Transmembrane Protein 179 is predicted to be made up of mostly alpha helix (52.36%) with some regions of random coil (31.33%) and beta sheets (12.02%).[11] Transmembrane Protein 179 is predicted to have two disulfide bridges, both located on the ER lumenal side of the membrane.[12]
Post-translational modifications
[edit]Transmembrane Protein 179 is predicted to undergo various post-translational modifications such as S-palmitoylation, N-glycosylation, Glycation, Phosphorylation, and O-Linked β-N-acetylglucosamine.[13][14][15][16][17]
Expression
[edit]Normal tissue expression
[edit]TMEM179 has been shown to be most highly expressed in brain and spinal cord tissue.[19][20] The gene is also relatively highly expressed in tissues in the lungs, adrenal gland, and testis.[1][21]
Abnormal tissue expression
[edit]TMEM179 has been shown to be relatively highly expressed in glioma cells.[21] TMEM179 has also been shown to be expressed highly in some other cancer cell lines.[22] It was most highly expressed in a small cell lung cancer cell line. It was also expressed in cancer cell lines originating from the brain, renal/urinary/male reproductive systems, and Breast/female reproductive system.
Regulation of Expression
[edit]The TMEM179 promoter was found to start at 104,604,641 bp and end at 104,606,647 bp on the reverse strand using Genomatix's Gene2Promoter tool.[23] Genomatix's MatInspector tool found 732 predicted transcription factor binding sites for this promoter. Some transcription factors that are predicted to bind to the TMEM179 promoter that are of particular interest are EGR1—of which there are four predicted binding sites—and Neuron-Restrictive Silencer Factor (NRSF), both of which are involved in the regulation of neuron growth.
Interacting Proteins
[edit]Transmembrane Protein 179 has no known protein interactions.[24]
Homology
[edit]Paralogs
[edit]There are no known paralogs of the TMEM179 gene.[6][25]
Orthologs
[edit]Orthologs of TMEM179 have been found in animals as distantly related to humans as annelids and arthropods, but no orthologs have been found in more distantly related animals such as those in clades Porifera, Nematoda, and Cnidaria.[25] No orthologs have been found in any nonanimal organisms.
Species | Taxonomic Group | Median Time of Divergence From Homo sapiens (Millions of Years Ago)[28] | Accession Number | Sequence Identity to Homo sapiens (%) |
---|---|---|---|---|
Homo sapiens | Mammalia | 0 | NP_001273318.1 | 100 |
Mus musculus | Mammalia | 88 | NP_849246.2 | 94 |
Dromaius novaehollandiae | Aves | 320 | XP_025968310.1 | 84 |
Python bivittatus | Reptila | 320 | XP_007436683.1 | 83 |
Xenopus laevis | Amphibia | 353 | XP_018087798.1 | 76 |
Danio rerio | Actinopterygii | 432 | XP_003200427.1 | 66 |
Rhincodon typus | Chondrichthyes | 465 | XP_020385663.1 | 70 |
Branchiostoma belcheri | Chordata | 699 | XP_019647683.1 | 35 |
Biomphalaria glabrata | Mollusca | 794 | XP_013064109.1 | 38 |
Onthophagus taurus | Arthropoda | 794 | XP_022914672.1 | 33 |
Daphnia pulex | Arthropoda | 794 | EFX83970.1 | 33 |
Capitella teleta | Annelida | 794 | ELU12883.1 | 32 |
Function
[edit]The function of Transmembrane Protein 179 is not yet well understood. TMEM179 has been identified in a patent involving the production of neural regenerating cells (NRCs) from marrow adherent stem cells (MASCs).[2] According to this patent the methylation of CpG sequences in TMEM179 is decreased in NRCs compared to MASCs. This finding, coupled with the finding that TMEM179 is most highly expressed in the brain and spinal cord, provides strong evidence that Transmembrane Protein 179 plays a role in nervous system development. This function is also supported by the fact that no orthologs of TMEM179 have been found in nonanimal organisms or animals that lack a nervous system such as sea sponges.
References
[edit]- ^ a b c d "TMEM179 transmembrane protein 179 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2019-02-25.
- ^ a b Case, C. (2011). US20110136114A1. United States. Retrieved from https://patents.google.com/patent/US20110136114A1/en
- ^ Kent, W. J.; Sugnet, C. W.; Furey, T. S.; Roskin, K. M.; Pringle, T. H.; Zahler, A. M.; Haussler, a. D. (2002-05-16). "The Human Genome Browser at UCSC". Genome Research. 12 (6): 996–1006. doi:10.1101/gr.229102. ISSN 1088-9051. PMC 186604. PMID 12045153.
- ^ a b "Genecards Entry on TMEM179". www.genecards.org. Retrieved 2019-02-26.
- ^ "TMEM179 (transmembrane protein 179)". atlasgeneticsoncology.org. Retrieved 2019-05-02.
- ^ a b Kent, W. J. (2002-03-20). "BLAT---The BLAST-Like Alignment Tool". Genome Research. 12 (4): 656–664. doi:10.1101/gr.229202. ISSN 1088-9051. PMC 187518. PMID 11932250.
- ^ Walker, John M., 1948- (2005). The proteomics protocols handbook. Humana Press. ISBN 1588293432. OCLC 55955457.
{{cite book}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ a b Brendel, V.; Bucher, P.; Nourbakhsh, I. R.; Blaisdell, B. E.; Karlin, S. (1992-03-15). "Methods and algorithms for statistical analysis of protein sequences". Proceedings of the National Academy of Sciences. 89 (6): 2002–2006. doi:10.1073/pnas.89.6.2002. ISSN 0027-8424. PMC 48584. PMID 1549558.
- ^ Nakai, Kenta; Horton, Paul (2007), "Computational Prediction of Subcellular Localization", Protein Targeting Protocols, Methods in Molecular Biology, vol. 390, Humana Press, pp. 429–466, doi:10.1007/1-59745-466-4_29, ISBN 9781588297020, PMID 17951705, retrieved 2019-05-02
- ^ Hirokawa, T.; Boon-Chieng, S.; Mitaku, S. (1998-05-01). "SOSUI: classification and secondary structure prediction system for membrane proteins". Bioinformatics. 14 (4): 378–379. doi:10.1093/bioinformatics/14.4.378. ISSN 1367-4803. PMID 9632836.
- ^ Combet, C; Blanchet, C; Geourjon, C; Deléage, G (2000). "NPS@: Network Protein Sequence Analysis". Trends in Biochemical Sciences. 25 (3): 147–150. doi:10.1016/s0968-0004(99)01540-6. ISSN 0968-0004. PMID 10694887.
- ^ Ceroni, A.; Passerini, A.; Vullo, A.; Frasconi, P. (2006-07-01). "DISULFIND: a disulfide bonding state and cysteine connectivity prediction server". Nucleic Acids Research. 34 (Web Server): W177–W181. doi:10.1093/nar/gkl266. ISSN 0305-1048. PMC 1538823. PMID 16844986.
- ^ Zhou, Fengfeng; Xue, Yu; Yao, Xuebiao; Xu, Ying (2006-04-01). "CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS)". Bioinformatics. 22 (7): 894–896. doi:10.1093/bioinformatics/btl013. ISSN 1460-2059. PMID 16434441.
- ^ Julenius, Karin; Johansen, Morten B.; Zhang, Yu; Brunak, Sren; Gupta, Ramneek (2009), "Prediction of Glycosylation Sites in Proteins", Bioinformatics for Glycobiology and Glycomics, John Wiley & Sons, Ltd, pp. 163–192, doi:10.1002/9780470029619.ch9, ISBN 9780470029619, retrieved 2019-05-02
- ^ Johansen, Morten Bo; Kiemer, Lars; Brunak, Søren (2006-09-01). "Analysis and prediction of mammalian protein glycation". Glycobiology. 16 (9): 844–853. doi:10.1093/glycob/cwl009. ISSN 1460-2423. PMID 16762979.
- ^ Blom, Nikolaj; Gammeltoft, Steen; Brunak, Søren (1999). "Sequence and structure-based prediction of eukaryotic protein phosphorylation sites". Journal of Molecular Biology. 294 (5): 1351–1362. doi:10.1006/jmbi.1999.3310. PMID 10600390.
- ^ Gupta, Ramneek; Brunak, Søren (2002). "Prediction of glycosylation across the human proteome and the correlation to protein function". Biocomputing 2002. WORLD SCIENTIFIC: 310–322. doi:10.1142/9789812799623_0029. ISBN 9789810247775. PMID 11928486.
- ^ Hulo, N.; Bairoch, A.; Bulliard, V.; Cerutti, L.; Cuche, B. A.; de Castro, E.; Lachaize, C.; Langendijk-Genevaux, P. S.; Sigrist, C. J. A. (2007-12-23). "The 20 years of PROSITE". Nucleic Acids Research. 36 (Database): D245–D249. doi:10.1093/nar/gkm977. ISSN 0305-1048. PMC 2238851. PMID 18003654.
- ^ "AceView: Gene:TMEM179, a comprehensive annotation of human, mouse and worm genes with mRNAs or ESTsAceView". www.ncbi.nlm.nih.gov. Retrieved 2019-02-26.
- ^ NCBI GEO Profile GDS3052 entry on TMEM179. [https://www.ncbi.nlm.nih.gov/geo/tools/profileGraph.cgi?ID=GDS3052:1436754_at]
- ^ a b "NCBI Unigene EST Profile Viewer entry on TMEM179". www.ncbi.nlm.nih.gov. Retrieved 2019-05-04.
- ^ "Cell atlas - TMEM179 - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2019-02-26.
- ^ Cartharius, K.; Frech, K.; Grote, K.; Klocke, B.; Haltmeier, M.; Klingenhoff, A.; Frisch, M.; Bayerlein, M.; Werner, T. (2005-07-01). "MatInspector and beyond: promoter analysis based on transcription factor binding sites". Bioinformatics. 21 (13): 2933–2942. doi:10.1093/bioinformatics/bti473. ISSN 1367-4803. PMID 15860560.
- ^ Aranda, Bruno; Blankenburg, Hagen; Kerrien, Samuel; Brinkman, Fiona S L; Ceol, Arnaud; Chautard, Emilie; Dana, Jose M; De Las Rivas, Javier; Dumousseau, Marine (2011). "PSICQUIC and PSISCORE: accessing and scoring molecular interactions". Nature Methods. 8 (7): 528–529. doi:10.1038/nmeth.1637. hdl:10261/62788. ISSN 1548-7091. PMC 3246345. PMID 21716279.
- ^ a b "Protein BLAST: search protein databases using a protein query". blast.ncbi.nlm.nih.gov. Retrieved 2019-03-03.
- ^ Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M. (2014-04-16). "Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega". Molecular Systems Biology. 7 (1): 539. doi:10.1038/msb.2011.75. ISSN 1744-4292. PMC 3261699. PMID 21988835.
- ^ "BoxShade Server". embnet.vital-it.ch. Retrieved 2019-05-04.
- ^ "TimeTree :: The Timescale of Life". www.timetree.org. Retrieved 2019-05-04.