The full derivation of the skin depth formula is implicit in equations given in the sources.[ 1] : 51 [ 2] : 126 This article shows the steps of the full derivation with complex permittivity and permeability shown explicitly.
Starting with the equations and analysis on the Propagation constant page
γ
=
α
+
j
β
=
j
ω
μ
(
σ
+
j
ω
ϵ
)
{\displaystyle \gamma =\alpha +j\beta ={\sqrt {j\omega \mu (\sigma +j\omega \epsilon )}}}
δ
=
1
α
{\displaystyle \delta ={\frac {1}{\alpha }}}
with
ϵ
=
ϵ
′
−
j
ϵ
″
=
{\displaystyle \epsilon =\epsilon '-j\epsilon ''=}
complex permitivity ,
μ
=
μ
′
−
j
μ
″
=
{\displaystyle \mu =\mu '-j\mu ''=}
complex permeability ,
Carry out the math, gathering like terms (some cancel) and applying the formula for the square root of a complex number produces:
δ
=
1
α
=
2
ρ
ω
μ
′
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
(
ρ
ω
ϵ
′
)
2
+
(
1
+
2
ξ
ρ
ω
ϵ
′
)
(
1
+
χ
2
)
+
(
1
−
ξ
χ
)
ρ
ω
ϵ
′
−
χ
1
+
ρ
ω
ϵ
′
(
χ
+
ξ
)
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\frac {\sqrt {{\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}}){(\rho \omega \epsilon ')}^{2}+(1+2\xi \rho \omega \epsilon ')(1+{\color {red}\chi ^{2}})}}+(1-{\color {red}\xi \chi })\rho \omega \epsilon '-\chi }}{1+\rho \omega \epsilon '(\chi +\xi )}}\;.}
where
ξ
=
ϵ
″
ϵ
′
{\displaystyle \xi ={\frac {\epsilon ''}{\epsilon '}}\quad }
also known as dielectric loss tangent .
χ
=
μ
″
μ
′
{\displaystyle \chi ={\frac {\mu ''}{\mu '}}\quad }
also known as magnetic loss tangent.
If
ξ
<
0.1
{\displaystyle \xi <0.1}
and
χ
<
0.1
{\displaystyle \chi <0.1}
, then the cross terms shown in red may be taken to be zero. That yields a simpler expression:
δ
=
1
α
=
2
ρ
ω
μ
′
1
+
2
ξ
ρ
ω
ϵ
′
+
(
ρ
ω
ϵ
′
)
2
+
ρ
ω
ϵ
′
−
χ
1
+
(
χ
+
ξ
)
ρ
ω
ϵ
′
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\frac {\sqrt {{\sqrt {{1+2\xi \rho \omega \epsilon '+(\rho \omega \epsilon ')}^{2}}}+\rho \omega \epsilon '-\chi }}{1+(\chi +\xi )\rho \omega \epsilon '}}\;.}
If the dielectric loss is small (
ξ
≈
0
{\displaystyle \xi \approx 0}
), then
δ
=
1
α
=
2
ρ
ω
μ
′
1
+
(
ρ
ω
ϵ
′
)
2
+
ρ
ω
ϵ
′
−
χ
1
+
χ
ρ
ω
ϵ
′
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\frac {\sqrt {{\sqrt {1+{(\rho \omega \epsilon ')}^{2}}}+\rho \omega \epsilon '-\chi }}{1+\chi \rho \omega \epsilon '}}.}
If the magnetic loss is also small (
χ
≈
0
{\displaystyle \chi \approx 0}
) then this reduces the the more familiar form
δ
=
1
α
=
2
ρ
ω
μ
′
1
+
(
ρ
ω
ϵ
′
)
2
+
ρ
ω
ϵ
′
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\sqrt {{\sqrt {1+{(\rho \omega \epsilon ')}^{2}}}+\rho \omega \epsilon '}}\;.}
The propagation factor of a sinusoidal plane wave propagating in the x direction in a linear material may be given by two equivalent forms
P
=
e
−
γ
x
=
e
−
j
k
x
,
{\displaystyle P=e^{-\gamma x}=e^{-jkx},}
where
γ
=
α
+
j
β
=
j
ω
μ
(
σ
+
j
ω
ϵ
)
=
(
ω
μ
″
+
j
ω
μ
′
)
(
σ
+
ω
ϵ
″
+
j
ω
ϵ
′
)
=
{\displaystyle \gamma =\alpha +j\beta ={\sqrt {j\omega \mu (\sigma +j\omega \epsilon )}}={\sqrt {(\omega \mu ''+j\omega \mu ')(\sigma +\omega \epsilon ''+j\omega \epsilon ')}}=}
Propagation constant [ 2] : 126 ,
k
=
k
′
−
j
k
″
=
−
(
ω
μ
″
+
j
ω
μ
′
)
(
σ
+
ω
ϵ
″
+
j
ω
ϵ
′
)
=
{\displaystyle k=k'-jk''={\sqrt {-(\omega \mu ''+j\omega \mu ')(\sigma +\omega \epsilon ''+j\omega \epsilon ')}}=}
wavenumber [ 1] : 48 ,
β
=
k
′
=
{\displaystyle \beta =k'=}
phase constant in the units of radians /meter,
α
=
k
″
=
{\displaystyle \alpha =k''=}
attenuation constant in the units of nepers /meter,
ω
=
{\displaystyle \omega =}
frequency in the units of radians /meter,
x
=
{\displaystyle x=}
distance traveled in the x direction,
σ
=
{\displaystyle \sigma =}
conductivity in S /meter,
ρ
=
{\displaystyle \rho =}
resistivity in ohm -meter (Ω⋅m),
v
0
=
{\displaystyle v_{0}=}
phase velocity of free space (about 3 x 108 m/s),
λ
0
=
2
π
ω
v
0
=
{\displaystyle \lambda _{0}={\frac {2\pi }{\omega }}v_{0}=}
wavelength in free space,
ϵ
=
ϵ
′
−
j
ϵ
″
=
{\displaystyle \epsilon =\epsilon '-j\epsilon ''=}
complex permitivity ,
μ
=
μ
′
−
j
μ
″
=
{\displaystyle \mu =\mu '-j\mu ''=}
complex permeability ,
j
=
−
1
{\displaystyle j={\sqrt {-1}}}
.
The sign convention is chosen for consistency with propagation in lossy media. If the attenuation constant is positive, then the wave amplitude decreases as the wave propagates in the x direction.
Wavelength [ 2] : 126 [ 1] : 52 , phase velocity [ 2] : 124 [ 1] : 52 , and skin depth [ 2] : 130 [ 1] : 53 have simple relationships to the components of the propagation constant or wavenumber:
λ
=
2
π
β
,
v
p
=
ω
β
,
δ
=
1
α
,
{\displaystyle \lambda ={\frac {2\pi }{\beta }},\qquad v_{p}={\frac {\omega }{\beta }},\qquad \delta ={\frac {1}{\alpha }},}
λ
=
2
π
k
′
,
v
p
=
ω
k
′
,
δ
=
1
k
″
.
{\displaystyle \lambda ={\frac {2\pi }{k'}},\qquad v_{p}={\frac {\omega }{k'}},\qquad \delta ={\frac {1}{k''}}.}
Skin depth is the distance over which the wave attenuates by the factor
e
−
1
{\displaystyle e^{-1}}
. This is simply the reciprocal of the attenuation constant.
[ 1] : 53 [ 2] : 130
Algebraic rearrangement [ edit ]
By a straightforward, if lengthy, algebraic calculation, the expression for k can be simplified by defining some simple ratioes.
k
=
−
(
ω
μ
″
+
j
ω
μ
′
)
(
σ
+
ω
ϵ
″
+
j
ω
ϵ
′
)
=
ω
μ
′
ϵ
′
(
1
−
κ
χ
−
ξ
χ
)
−
j
(
χ
+
κ
+
ξ
)
,
{\displaystyle k={\sqrt {-(\omega \mu ''+j\omega \mu ')(\sigma +\omega \epsilon ''+j\omega \epsilon ')}}=\omega {\sqrt {\mu '\epsilon '}}{\sqrt {(1-\kappa \chi -\xi \chi )-j(\chi +\kappa +\xi )}},}
where
ξ
=
ϵ
″
ϵ
′
,
χ
=
μ
″
μ
′
,
κ
=
1
τ
=
σ
ω
ϵ
′
=
1
ρ
ω
ϵ
′
.
{\displaystyle \xi ={\frac {\epsilon ''}{\epsilon '}},\quad \chi ={\frac {\mu ''}{\mu '}},\quad \kappa ={\frac {1}{\tau }}={\frac {\sigma }{\omega \epsilon '}}={\frac {1}{\rho \omega \epsilon '}}.}
Note
(
χ
+
κ
+
ξ
)
≥
0
{\displaystyle (\chi +\kappa +\xi )\geq 0}
in a source free region.
ξ
{\displaystyle \xi }
,
χ
{\displaystyle \chi }
, and
τ
{\displaystyle \tau }
are also called dielectric loss tangent , magnetic loss tangent, and dielectric relaxation time constant, respectively.
Using the formula for the square root of a complex number
β
=
k
′
=
ω
μ
′
ϵ
′
2
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
+
(
2
ξ
κ
+
κ
2
)
(
1
+
χ
2
)
+
1
−
ξ
χ
−
κ
χ
,
{\displaystyle \beta =k'=\omega {\sqrt {\frac {\mu '\epsilon '}{2}}}{\sqrt {{\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}})+(2\xi \kappa +\kappa ^{2})(1+{\color {red}\chi ^{2}})}}+1-{\color {red}\xi \chi }-\kappa \chi }}\;,}
α
=
k
″
=
ω
μ
′
ϵ
′
2
(
κ
+
χ
+
ξ
)
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
+
(
2
ξ
κ
+
κ
2
)
(
1
+
χ
2
)
+
1
−
ξ
χ
−
κ
χ
.
{\displaystyle \alpha =k''=\omega {\sqrt {\frac {\mu '\epsilon '}{2}}}{\frac {(\kappa +\chi +\xi )}{\sqrt {{\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}})+(2\xi \kappa +\kappa ^{2})(1+{\color {red}\chi ^{2}})}}+1-{\color {red}\xi \chi }-\kappa \chi }}}\;.}
δ
=
1
α
=
1
ω
2
μ
′
ϵ
′
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
+
(
2
ξ
κ
+
κ
2
)
(
1
+
χ
2
)
+
(
1
−
ξ
χ
−
κ
χ
)
(
κ
+
χ
+
ξ
)
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\frac {1}{\omega }}{\sqrt {\frac {2}{\mu '\epsilon '}}}{\frac {{\sqrt {{\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}})+(2\xi \kappa +\kappa ^{2})(1+{\color {red}\chi ^{2}})}}+(1-{\color {red}\xi \chi }-\kappa \chi }})}{(\kappa +\chi +\xi )}}\;.}
δ
=
1
α
=
1
ω
τ
2
μ
′
ϵ
′
τ
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
+
(
2
ξ
κ
+
κ
2
)
(
1
+
χ
2
)
+
τ
(
1
−
ξ
χ
−
κ
χ
)
τ
(
κ
+
χ
+
ξ
)
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\frac {1}{\omega }}{\sqrt {\tau {\frac {2}{\mu '\epsilon '}}}}{\frac {{\sqrt {\tau {\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}})+(2\xi \kappa +\kappa ^{2})(1+{\color {red}\chi ^{2}})}}+\tau (1-{\color {red}\xi \chi }-\kappa \chi }})}{\tau (\kappa +\chi +\xi )}}\;.}
δ
=
1
α
=
2
ρ
ω
μ
′
(
1
+
ξ
2
+
χ
2
+
ξ
2
χ
2
)
τ
2
+
(
2
ξ
τ
+
1
)
(
1
+
χ
2
)
+
(
τ
−
ξ
χ
τ
−
χ
)
1
+
τ
(
χ
+
ξ
)
.
{\displaystyle \delta ={\frac {1}{\alpha }}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\frac {{\sqrt {{\sqrt {(1+{\color {red}\xi ^{2}+\chi ^{2}+\xi ^{2}\chi ^{2}})\tau ^{2}+(2\xi \tau +1)(1+{\color {red}\chi ^{2}})}}+(\tau -{\color {red}\xi \chi }\tau -\chi }})}{1+\tau (\chi +\xi )}}\;.}
simplified general expression [ edit ]
If the dielectric loss tangent is small (
ξ
<
0.1
{\displaystyle \xi <0.1}
) and magnetic loss tangent is small (
χ
<
0.1
{\displaystyle \chi <0.1}
),
then the cross terms shown in red in the previous section can be replaced with zero. That yields simplified expressions as follows:
k
′
=
ω
μ
′
ϵ
′
2
1
+
2
ξ
κ
+
κ
2
+
1
−
κ
χ
{\displaystyle k'=\omega {\sqrt {\frac {\mu '\epsilon '}{2}}}{\sqrt {{\sqrt {1+2\xi \kappa +\kappa ^{2}}}+1-\kappa \chi }}}
k
″
=
ω
μ
′
ϵ
′
2
(
κ
+
χ
+
ξ
)
1
+
2
ξ
κ
+
κ
2
+
1
−
κ
χ
{\displaystyle k''=\omega {\sqrt {\frac {\mu '\epsilon '}{2}}}{\frac {(\kappa +\chi +\xi )}{\sqrt {{\sqrt {1+2\xi \kappa +\kappa ^{2}}}+1-\kappa \chi }}}}
δ
=
1
ω
2
μ
′
ϵ
′
1
+
2
ξ
κ
+
κ
2
+
1
−
κ
χ
(
κ
+
χ
+
ξ
)
{\displaystyle \delta ={\frac {1}{\omega }}{\sqrt {\frac {2}{\mu '\epsilon '}}}{\frac {\sqrt {{\sqrt {1+2\xi \kappa +\kappa ^{2}}}+1-\kappa \chi }}{(\kappa +\chi +\xi )}}}
alternate simplified general expression [ edit ]
Multiplying the previous expressions by
(
ρ
ω
ϵ
′
)
/
(
ρ
ω
ϵ
′
)
{\displaystyle (\rho \omega \epsilon ')/(\rho \omega \epsilon ')}
yields these alternate expressions.
k
′
=
ω
μ
′
2
ρ
(
ρ
ω
ϵ
′
)
2
+
2
ξ
ρ
ω
ϵ
′
+
1
+
ρ
ω
ϵ
′
−
χ
{\displaystyle k'={\sqrt {\frac {\omega \mu '}{2\rho }}}\;{\sqrt {{\sqrt {{(\rho \omega \epsilon ')}^{2}+2\xi \rho \omega \epsilon '+1}}+\rho \omega \epsilon '-\chi }}}
k
″
=
ω
μ
′
2
ρ
1
+
ρ
ω
ϵ
′
(
χ
+
ξ
)
(
ρ
ω
ϵ
′
)
2
+
2
ξ
ρ
ω
ϵ
′
+
1
+
ρ
ω
ϵ
′
−
χ
{\displaystyle k''={\sqrt {\frac {\omega \mu '}{2\rho }}}\;{\frac {1+\rho \omega \epsilon '(\chi +\xi )}{\sqrt {{\sqrt {{(\rho \omega \epsilon ')}^{2}+2\xi \rho \omega \epsilon '+1}}+\rho \omega \epsilon '-\chi }}}}
δ
=
2
ρ
ω
μ
′
(
ρ
ω
ϵ
′
)
2
+
(
2
ξ
ρ
ω
ϵ
′
+
1
)
+
ρ
ω
ϵ
′
−
χ
1
+
ρ
ω
ϵ
′
(
χ
+
ξ
)
{\displaystyle \delta ={\sqrt {\frac {2\rho }{\omega \mu '}}}\;{\frac {\sqrt {{\sqrt {{(\rho \omega \epsilon ')}^{2}+(2\xi \rho \omega \epsilon '+1)}}+\rho \omega \epsilon '-\chi }}{1+\rho \omega \epsilon '(\chi +\xi )}}}
Using the simplified general expressions for low dielectric and magnetic losses, the skin depth is given by
δ
=
1
k
″
=
2
1
+
2
ξ
κ
+
κ
2
+
1
−
κ
χ
ω
μ
′
ϵ
′
(
κ
+
χ
+
ξ
)
{\displaystyle \delta ={\frac {1}{k''}}={\frac {{\sqrt {2}}{\sqrt {{\sqrt {1+2\xi \kappa +\kappa ^{2}}}+1-\kappa \chi }}}{\omega {\sqrt {\mu '\epsilon '}}\;(\kappa +\chi +\xi )}}\quad }
low loss tangents insulator form suitable for
κ
<
1
{\displaystyle \kappa <1}
For a good insulators at typical frequencies of interest,
κ
=
σ
ω
ϵ
′
{\displaystyle \kappa ={\frac {\sigma }{\omega \epsilon '}}}
is very small. For example, at 1 mHz for polyethylene
κ
≈
0.0005
{\displaystyle \;\kappa \approx 0.0005\;}
and gets smaller at higher frequencies.
The expression for skin depth can be simplified by setting the cross terms
χ
κ
,
ξ
κ
,
κ
2
{\displaystyle \;\chi \kappa ,\;\xi \kappa ,\;\kappa ^{2}\;}
to zero.
δ
=
2
ω
μ
′
ϵ
′
(
χ
+
κ
+
ξ
)
{\displaystyle \delta ={\frac {2}{\omega {\sqrt {\mu '\epsilon '}}\;(\chi +\kappa +\xi )}}\quad }
expression for skin depth with low material losses. If there are no losses (such as vacuum), then skin depth is infinite.
If the dielectric and magnetic losses are small (
ξ
<
0.1
{\displaystyle \xi <0.1}
and
χ
<
0.1
{\displaystyle \chi <0.1}
) then the product of those terms in the alternate general expression can be taken to be zero.
δ
=
1
k
″
=
2
ρ
ω
μ
′
(
ρ
ω
ϵ
′
)
2
+
2
ξ
ρ
ω
ϵ
′
+
1
+
ρ
ω
ϵ
′
−
χ
1
+
(
χ
+
ξ
)
ρ
ω
ϵ
′
{\displaystyle \delta ={\frac {1}{k''}}={\sqrt {\frac {2\rho }{\omega \mu '}}}{\frac {\sqrt {{\sqrt {{(\rho \omega \epsilon ')}^{2}+2\xi \rho \omega \epsilon '+1}}+\rho \omega \epsilon '-\chi }}{1+(\chi +\xi )\rho \omega \epsilon '}}\quad }
low loss tangents conductor form
If the magnetic loss and dielectric loss are sufficiently small, the formula simplifies to the formula from skin effect article.
δ
=
2
ρ
ω
μ
′
1
+
(
ρ
ω
ϵ
′
)
2
+
ρ
ω
ϵ
′
{\displaystyle \delta ={\sqrt {\frac {2\rho }{\omega \mu '}}}{\sqrt {{\sqrt {1+{(\rho \omega \epsilon ')}^{2}}}+\rho \omega \epsilon '}}\quad }
ρ
ω
ϵ
′
{\displaystyle \rho \omega \epsilon '\;}
is typically small for good conductors. For example, copper at 1 THz
ρ
ω
ϵ
′
≈
10
−
6
{\displaystyle \;\rho \omega \epsilon '\approx 10^{-6}}
.
Since
ρ
ω
ϵ
′
{\displaystyle \rho \omega \epsilon '}
is small,
(
ρ
ω
ϵ
′
)
2
{\displaystyle {(\rho \omega \epsilon ')}^{2}}
and
ξ
ρ
ω
ϵ
′
{\displaystyle \;\xi \rho \omega \epsilon '}
can be taken to be zero.
δ
=
2
ρ
ω
μ
′
1
+
ρ
ω
ϵ
′
−
χ
≈
2
ρ
ω
μ
′
{\displaystyle \delta ={\sqrt {\frac {2\rho }{\omega \mu '}}}{\sqrt {1+\rho \omega \epsilon '-\chi }}\approx {\sqrt {\frac {2\rho }{\omega \mu '}}}}
^ a b c d e f Harrington, Roger F. (1961), Time-Harmonic Electromagnetic Fields (1st ed.), McGraw-Hill, ISBN 0-07-026745-6
^ a b c d e f Jordon, Edward C.; Balman, Keith G. (1968), Electromagnetic Waves and Radiating Systems (2nd ed.), Prentice-Hall