Jump to content

User:Chaslsu2214/Lysinibacillus fusiformis

From Wikipedia, the free encyclopedia

Chaslsu2214/Lysinibacillus fusiformis
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
fusiformis
Binomial name
Lysinibacillus fusiformis
(Ahmed et al., 2007)
Type strain
(ZC1)T
ZB2
HK1
B-1
DSM 2898
JCM 12229
LMG 9816
ATCC 7055
CCUG 28888
NBRC 15717
Synonyms

Bacillus fusiformis
Aerobacillus fusiformis
(Meyer and Gottheil, 1901)
Bacillus sphaericus subsp. fusiformis
(Smith et al., 1946)


Lysinibacillus fusiformis (commonly abbrieviated L. fusiformis) is a gram-positive, rod-shaped bacterium of the genus Lysinibacillus [1]. Scientists have yet to completely characterize this microbe's pathogenic nature [2],[3]. Though little is known about this organism, several genome sequencing projects for various strains of L. fusiformis are currently underway [4].

History

[edit]

Lysinibacillus fusiformis was initially isolated from the surface of beta vulgaris by German biologist Dr. O. Gottheil in 1901 [5]. Dr. Gottheil used a variety of isolation techniques, which included cultivating the organism on carrot and beet slices [5]. L. fusiformis was originally known as Bacillus fusiformis prior to 2007; at which point it was reclassified to the genus Lysinibacillus, along with its close relative Bacillus sphaericus [6]. The taxonomic classification of the organism was reassigned as a result of L. fusiformis' distinctive characteristics, such as physiology, phylogeny, and peptidoglycan composition.

Etymology

[edit]

The meaning of "lysini," as it pertains to members of the genus Lysinibacillus, signifies the presence of lysine, alanine, glutamic acid, and aspartic acid in the peptidoglycan layer of the cell wall [6]. “Bacillus”, meaning small-rod, refers to the rod-shaped physiology of the bacterial form [1]. “Fusum” translates to spindle and “forma” denotes a particular figure, appearance, or configuration. Thus, “fusiformis” is derived from the bacteria’s spindle-like structure [1].

Morphology

[edit]

Lysinibacillus fusiformis is gram-positive, rod-shaped, non-motile bacterium [7]. Active cells have an approximate length of 2.5-3.0 micrometers and an approximate width of 0.5-0.9 micrometers [8]. Under strenuous conditions, this microbe can generate inactive spherical endospores that are resistant to high temperatures, damaging chemicals, and ultraviolet light [7]. The developing endospores localize either centrally or terminally within the enlarged sporangia and can remain functional for long periods of time [7].

Ecology

[edit]

Lysinibacillus fusiformis is a naturally occurring bacterium and various strains have been isolated from multiple environments including farming soil and factory wastewater [8],[5]. This organism is considered to be altogether mesophilic; growing best at a temperature range of 17-37 degrees Celsius [7]. L. fusiformis is also considered to be mildly alkaliphilic and moderately halophilic; growing best at a pH range of 6-9.5 and an NaCl concentration of 2-7% [7].

Pathogenicity

[edit]

In the 20th Century, Lysinibacillus fusiformis was believed to cause a form of pathogenicity in humans relating to tropical ulcer formations and dermal and/or respiratory infections [2]. Some researchers believed that L. fusiformis infections could only occur as a symbiotic relationship with certain spirochaete species [3]. Multiple experiments to prove the existence of pathogenicity have turned up inconclusive [2],[3]. In 2010, researchers identified a strain of L. fusiformis, B-1, from 16S rRNA gene analysis [9]. This strain has been found exclusively in the toxin of the puffer fish, Takifugu obscurus [9]. This toxin is a tetrodotoxin, which is a highly fatal neurotoxin that destroys the central nervous system of humans causing paralysis [9]. L. fusiformis is shown to be sensitive to the common broad-spectrum antibiotic known as tetracycline [1].

Metabolism

[edit]

Lysinibacillus fusiformis tests positive for oxidase and is an obligate aerobe [7]. This means that it can utilize oxygen to metabolize various sugars and other simple carbohydrates [7]. However, it does not metabolize polysaccharides such as starch [7]. This organism does not produce acid or gas from the metabolism of D-glucose or any other carbohydrates and reduce nitrate to nitrite [7]. L. fusiformis can hydrolyze casein and gelatin [7]. It can also utilize acetate, citrate, formate, lactate, and succinate as carbon sources [7]. From a metabolic standpoint, L. fusiformis and Lysinibacillus sphaericus are nearly identical [1]. As of now, the only known factor that distinguishes these two species is that L. fusiformis is positive for urease [1]. This means that L. fusiformis can hydrolyze urea to produce ammonia and CO2 [10]. In 2011, the strain L. fusiformis ZC1 was shown to retain the ability to reduce chromate to chromium [8].

Genomics

[edit]

As of 2014, there are a couple partial 16S rRNA gene sequences (GenBank No. AF169537 and EU430993) that have been analyzed for L. fusiformis and several whole genome sequences of various strains [11],[4]. There are multiple ongoing genome sequencing projects involving this organism [4]. Currently, these genomic sequences exist as scaffolds and include the following strains: Lysinibacillus fusiformis H1K, Lysinibacillus fusiformis ZB2, and Lysinibacillus fusiformis ZC1 [4]. According to the National Center for Biotechnology Information, L. fusiformis ZC1 (BioProject: PRJNA226204) is the current genomic representative for L. fusiformis [4]. The L. fusiformis ZC1 genome was sequenced using the whole genome shotgun sequencing method [8]. Genomic analysis of strain ZC1 shows a genome with an approximate length of 4.65 megabases that contains 4,729 protein-coding genes and maintains a relatively moderate GC content (mol%) of 37.3% [8]. The gene chrA was found in L. fusiformis and encodes a chromate Cr(VI) transporter that confirms chromate Cr(VI) resistance[8].

Applications to Science and Medicine

[edit]

The mechanism of L. fusiformis’ pathogenicity is not well understood by microbiologists [2],[3]. Chromium is an important element used in the manufacturing of many products such as leather tanning, alloy production, and electroplating [8]. For many countries, factory waste contamination of soil waters is an ever-growing problem in the modern industrial society. Chromate Cr(VI) contamination of soil waters can cause chromium toxicity in many biological systems that utilize or come into contact with this waste [8]. Conventional methods for the detoxification of soil waters are not cost effective and can cause subsequent environmental pollution [8]. L. fusiformis ZC1 has the ability to reduce toxic hexavalent chromium Cr(VI) to less-toxic trivalent chromium Cr(III)[8]. This ability makes it a candidate for the detoxification of factory wastewaters [8].

References

[edit]
  1. ^ a b c d e f Priest, FG, M. Goodfellow, and C. Todd. "A Numerical Classification of the Genus Bacillus." National Center for Biotechnology Information. U.S. National Library of Medicine, July 1988. Web. 29 Apr. 2014.
  2. ^ a b c d Smith, E. C. "Inoculation Experiments with Bacillus Fusiformis Isolated from Tropical Ulcer with Observations on the Bacillus." National Center for Biotechnology Information. U.S. National Library of Medicine, 14 Apr. 1933. Web. 29 Apr. 2014.
  3. ^ a b c d Peters, William H. "Hand Infection Apparently Due to Bacillus Fusiformis."JSTOR. The Journal of Infectious Diseases, 15 June 1911. Web. 29 Apr. 2014.
  4. ^ a b c d e "Lysinibacillus Fusiformis." National Center for Biotechnology Information. U.S. National Library of Medicine, n.d. Web. 29 Apr. 2014.
  5. ^ a b c "Botanische Beschreibung Einiger Bodenbakterien." Internet Archive. Illinois, 1901. Web. 30 Apr. 2014.
  6. ^ a b Ahmed, Iftikhar et al. "Proposal of Lysinibacillus Boronitolerans Gen. Nov. Sp. Nov., and Transfer of Bacillus Fusiformis to Lysinibacillus Fusiformis Comb. Nov. and Bacillus Sphaericus to Lysinibacillus Sphaericus Comb. Nov." IJSEM. International Journal of Systematic and Evolutionary Microbiology, May 2007. Web. 29 Apr. 2014.
  7. ^ a b c d e f g h i j k David Hendricks, Paul De Vos, and William Barny Whitman. The Firmicutes. 2nd ed. Vol. 3. Dordrecht: Springer, 2009. Print.
  8. ^ a b c d e f g h i j k He, M et al. "Characterization and Genomic Analysis of a Highly Chromate Resistant and Reducing Bacterial Strain Lysinibacillus Fusiformis ZC1." National Center for Biotechnology Information. U.S. National Library of Medicine, 30 Jan. 2011. Web. 29 Apr. 2014.
  9. ^ a b c Wang, Jun, Yanhui Fan, and Zhigang Yao. "Isolation of a Lysinibacillus Fusiformis Strain with Tetrodotoxin-producing Ability from Puffer Fish Fugu Obscurus and the Characterization of This Strain." ScienceDirect. Elservier, 15 Sept. 2010. Web. 29 Apr. 2014.
  10. ^ Brink, Benita. "Urease Test Protocol." ASM MicrobeLibrary. American Society For Microbiology, 11 Nov. 2011. Web. 29 Apr. 2014.
  11. ^ Nakamura, L. K. "Phylogeny of Bacillus Sphaericus-Like Organisms." International Journal of Systematic and Evolutionary Microbiology 50 (2000): 1715-722. Web.