From Wikipedia, the free encyclopedia
In the language of first-order logic , the set of functions
{
f
1
,
f
2
,
.
.
.
,
f
n
}
{\displaystyle \{f_{1},f_{2},...,f_{n}\}\,}
is linearly independent , over the interval
Ω
{\displaystyle \Omega \,}
in
R
{\displaystyle \mathbb {R} }
, iff :
∀
α
.
[
α
∈
R
n
∧
α
≠
0
→
∃
x
∈
Ω
.
¬
P
(
α
,
x
)
]
{\displaystyle \forall {\boldsymbol {\alpha }}.\,{\Big [}{\boldsymbol {\alpha }}\in \mathbb {R} ^{n}\land \,{\boldsymbol {\alpha }}\neq 0\,\to \,\exists x\in \Omega \,.^{\neg }P({\boldsymbol {\alpha }},x){\Big ]}}
, where
P
(
α
,
x
)
≡
[
∑
i
=
1
n
α
i
f
i
(
x
)
=
0
]
{\displaystyle P({\boldsymbol {\alpha }},x)\equiv {\Bigg [}\sum _{i=1}^{n}\alpha _{i}\,f_{i}(x)=0{\Bigg ]}}
.
Expressed in disjunctive normal form (DNF) the above definition reads:
L
I
(
Ω
)
≡
∀
α
.
[
α
∉
R
n
∨
α
=
0
∨
∃
x
∈
Ω
.
¬
P
(
α
,
x
)
]
{\displaystyle LI(\Omega )\,\equiv \,\forall {\boldsymbol {\alpha }}.\,{\Big [}\,{\boldsymbol {\alpha }}\notin \mathbb {R} ^{n}\,\lor \,{\boldsymbol {\alpha }}=0\,\lor \,\exists x\in \Omega \,.^{\neg }P({\boldsymbol {\alpha }},x)\,{\Big ]}}
,
where
L
I
(
Ω
)
{\displaystyle LI(\Omega )}
is shorthand for the statement occurring immediately before the iff (note that negation of
L
I
(
Ω
)
{\displaystyle LI(\Omega )}
gives the correct statement for linear dependence).
The text of our theorem "If the Wronskian is non-zero at some point in an interval, then the functions are linearly independent on the interval" , now translates as
∃
y
∈
Ω
.
W
(
y
)
≠
0
→
L
I
(
Ω
)
{\displaystyle \exists y\in \Omega .\;W(y)\neq 0\,\to \,LI(\Omega )}
,
or, in DNF,
(
1
)
∀
α
.
[
∀
y
.
[
y
∉
Ω
∨
W
(
y
)
=
0
]
∨
α
∉
R
n
∨
α
=
0
∨
∃
x
∈
Ω
.
¬
P
(
α
,
x
)
]
{\displaystyle (1)\quad \forall {\boldsymbol {\alpha }}.\,{\bigg [}\,\forall y.\,{\Big [}\,y\notin \Omega \,\lor \,W(y)=0\,{\Big ]}\lor \,{\boldsymbol {\alpha }}\notin \mathbb {R} ^{n}\,\lor \,{\boldsymbol {\alpha }}=0\,\lor \,\exists x\in \Omega \,.^{\neg }P({\boldsymbol {\alpha }},x)\,{\bigg ]}}
,
where
W
(
y
)
{\displaystyle W(y)}
is the value of the Wronskian at the point
y
{\displaystyle y}
.
The following statement summarizes the situation when Cramer's rule is applied to the linear system associated with the Wronskian:
∀
α
.
[
α
∈
R
n
→
[
∃
x
∈
Ω
.
[
P
(
α
,
x
)
∧
W
(
x
)
≠
0
]
→
α
=
0
]
]
{\displaystyle \forall {\boldsymbol {\alpha }}.\,{\Bigg [}\,{\boldsymbol {\alpha }}\in \mathbb {R} ^{n}\to {\bigg [}\,\exists x\in \Omega .\,{\Big [}\,P({\boldsymbol {\alpha }},x)\,\land \,W(x)\neq 0\,{\Big ]}\to \,{\boldsymbol {\alpha }}=0\;{\bigg ]}\,{\Bigg ]}}
,
or,
(
2
)
∀
α
.
[
∀
x
.
[
x
∉
Ω
∨
W
(
x
)
=
0
∨
¬
P
(
α
,
x
)
]
∨
α
∉
R
n
∨
α
=
0
]
{\displaystyle (2)\quad \forall {\boldsymbol {\alpha }}.\,{\bigg [}\,\forall x.\,{\Big [}\,x\notin \Omega \,\lor \;W(x)=0\;\lor \,^{\neg }\!P({\boldsymbol {\alpha }},x)\,{\Big ]}\lor \,{\boldsymbol {\alpha }}\notin \mathbb {R} ^{n}\,\lor \,{\boldsymbol {\alpha }}=0\;{\bigg ]}}
.
In first-order logic, the statement
∀
x
.
[
A
(
x
)
∨
B
(
x
)
]
{\displaystyle \forall x.\,{\big [}A(x)\lor B(x){\big ]}}
, entails the statement
∀
x
.
A
(
x
)
∨
∃
y
.
B
(
y
)
{\displaystyle \forall x.A(x)\lor \exists y.B(y)}
. Consequently, statement (2) entails statement (1) , and the theorem is proved .