Term in quantum information theory
In quantum information theory, the idea of a typical subspace plays an important role in the proofs of many coding theorems (the most prominent example being Schumacher compression). Its role is analogous to that of the typical set in classical information theory.
Unconditional quantum typicality
[edit]
Consider a density operator
with the following spectral decomposition:
![{\displaystyle \rho =\sum _{x}p_{X}(x)\vert x\rangle \langle x\vert .}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/30dce762a7bd7a483c0fcc1ebe6e4782cef78393)
The weakly typical subspace is defined as the span of all vectors such that
the sample entropy
of their classical
label is close to the true entropy
of the distribution
:
![{\displaystyle T_{\delta }^{X^{n}}\equiv {\text{span}}\left\{\left\vert x^{n}\right\rangle :\left\vert {\overline {H}}(x^{n})-H(X)\right\vert \leq \delta \right\},}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/314d12570ff008877738c5ab89714573e87dcc44)
where
![{\displaystyle {\overline {H}}(x^{n})\equiv -{\frac {1}{n}}\log(p_{X^{n}}(x^{n})),}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/21f08ecbdc28386e21ab55cfd0699b742f8ac1b3)
![{\displaystyle H(X)\equiv -\sum _{x}p_{X}(x)\log p_{X}(x).}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/457902e83e40c3e24d504453ca49d2491b44b044)
The projector
onto the typical subspace of
is
defined as
![{\displaystyle \Pi _{\rho ,\delta }^{n}\equiv \sum _{x^{n}\in T_{\delta }^{X^{n}}}\vert x^{n}\rangle \langle x^{n}\vert ,}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/479dc1071f521cdd5b44098c4cb5296a9e5acd09)
where we have "overloaded" the symbol
to refer also to the set of
-typical sequences:
![{\displaystyle T_{\delta }^{X^{n}}\equiv \left\{x^{n}:\left\vert {\overline {H}}\left(x^{n}\right)-H(X)\right\vert \leq \delta \right\}.}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/5d87df6ee896a303f9cb1159a47f78e9bb5381ea)
The three important properties of the typical projector are as follows:
![{\displaystyle {\text{Tr}}\left\{\Pi _{\rho ,\delta }^{n}\rho ^{\otimes n}\right\}\geq 1-\epsilon ,}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/7c61e16bb4d5f4dd0b1ab7c1448d25a99e9218a0)
![{\displaystyle {\text{Tr}}\left\{\Pi _{\rho ,\delta }^{n}\right\}\leq 2^{n\left[H\left(X\right)+\delta \right]},}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/864bd5e94f81b15d982984fc6e9aa20c04d0189d)
![{\displaystyle 2^{-n\left[H(X)+\delta \right]}\Pi _{\rho ,\delta }^{n}\leq \Pi _{\rho ,\delta }^{n}\rho ^{\otimes n}\Pi _{\rho ,\delta }^{n}\leq 2^{-n\left[H(X)-\delta \right]}\Pi _{\rho ,\delta }^{n},}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/a16d3babe738beb2f123c0b834f5a637533d741b)
where the first property holds for arbitrary
and
sufficiently large
.
Conditional quantum typicality
[edit]
Consider an ensemble
of states. Suppose that each state
has the
following spectral decomposition:
![{\displaystyle \rho _{x}=\sum _{y}p_{Y|X}(y|x)\vert y_{x}\rangle \langle y_{x}\vert .}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/0e3def6b13fce6ece5516c3e8fb67afc90114ec3)
Consider a density operator
which is conditional on a classical
sequence
:
![{\displaystyle \rho _{x^{n}}\equiv \rho _{x_{1}}\otimes \cdots \otimes \rho _{x_{n}}.}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/97d2fb5561e8f100716c2236f2fc1c1e37669125)
We define the weak conditionally typical subspace as the span of vectors
(conditional on the sequence
) such that the sample conditional entropy
of their classical labels is close
to the true conditional entropy
of the distribution
:
![{\displaystyle T_{\delta }^{Y^{n}|x^{n}}\equiv {\text{span}}\left\{\left\vert y_{x^{n}}^{n}\right\rangle :\left\vert {\overline {H}}(y^{n}|x^{n})-H(Y|X)\right\vert \leq \delta \right\},}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/508450628d8246f8d49ada80bcc4f9a1ae057850)
where
![{\displaystyle {\overline {H}}(y^{n}|x^{n})\equiv -{\frac {1}{n}}\log \left(p_{Y^{n}|X^{n}}(y^{n}|x^{n})\right),}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/ab68b4a7c29df46324a052702fae7661e687cfe4)
![{\displaystyle H(Y|X)\equiv -\sum _{x}p_{X}(x)\sum _{y}p_{Y|X}(y|x)\log p_{Y|X}(y|x).}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/cdc74c3baa95024c5a0e14e07f393a6ffb68d58e)
The projector
onto the weak conditionally typical
subspace of
is as follows:
![{\displaystyle \Pi _{\rho _{x^{n}},\delta }\equiv \sum _{y^{n}\in T_{\delta }^{Y^{n}|x^{n}}}\vert y_{x^{n}}^{n}\rangle \langle y_{x^{n}}^{n}\vert ,}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/9a94afa0a1923c6e54a40035fe919cea427b8104)
where we have again overloaded the symbol
to refer
to the set of weak conditionally typical sequences:
![{\displaystyle T_{\delta }^{Y^{n}|x^{n}}\equiv \left\{y^{n}:\left\vert {\overline {H}}\left(y^{n}|x^{n}\right)-H(Y|X)\right\vert \leq \delta \right\}.}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/86bdb54ed48caf18d350f395056ad82eba2972ae)
The three important properties of the weak conditionally typical projector are
as follows:
![{\displaystyle \mathbb {E} _{X^{n}}\left\{{\text{Tr}}\left\{\Pi _{\rho _{X^{n}},\delta }\rho _{X^{n}}\right\}\right\}\geq 1-\epsilon ,}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/b72180efe1515fd7b7782a4bc04b1e3f2625d5ba)
![{\displaystyle {\text{Tr}}\left\{\Pi _{\rho _{x^{n}},\delta }\right\}\leq 2^{n\left[H(Y|X)+\delta \right]},}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/19bc9d957f7d82849319d4190401b14a6df3e922)
![{\displaystyle 2^{-n\left[H(Y|X)+\delta \right]}\ \Pi _{\rho _{x^{n}},\delta }\leq \Pi _{\rho _{x^{n}},\delta }\ \rho _{x^{n}}\ \Pi _{\rho _{x^{n}},\delta }\leq 2^{-n\left[H(Y|X)-\delta \right]}\ \Pi _{\rho _{x^{n}},\delta },}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/56415b84f37564e580bab166e7c01e547f06a9af)
where the first property holds for arbitrary
and
sufficiently large
, and the expectation is with respect to the
distribution
.