Jump to content

Topological deep learning

From Wikipedia, the free encyclopedia

Topological machine learning (TML) is a research field situated at the intersection of computational topology and machine learning. In contrast to many other machine learning techniques, methods from TML offer a unified perspective that permits studying various kinds of data, including point clouds, meshes, time series, scalar fields (e.g. images), graphs, or general topological spaces like simplicial complexes and CW complexes.[1]

A particularly noteworthy branch of topological machine learning is topological deep learning (TDL).[2][3][4][5][6][7] Just like deep learning methods obviate the need for explicit feature engineering, methods from TDL can learn task-specific representations from input data. Moreover, TDL methods can be used in a modular fashion, for instance as layers for a deep neural network, allowing their seamless integration into existing deep learning model architectures.[8][9][10][11] TDL also encompasses methods from computational and algebraic topology that permit studying properties of neural networks and their training process, such as their predictive performance or generalization properties.[12][13][14][15][16][17]

Motivation

[edit]

Conventional deep learning often operates under the assumption that the data under examination reside in a linear vector space and can be effectively characterized using feature vectors. However, there is a growing recognition that this conventional perspective may be inadequate for describing various real-world datasets. For instance, molecules are more aptly represented as graphs rather than feature vectors. Similarly, three-dimensional objects, such as those encountered in computer graphics and geometry processing, are better represented as meshes. Additionally, data originating from social networks, where actors are interconnected in complex ways, defy simple vector-based descriptions. Consequently, there has been a surge in interest in integrating concepts from topology into traditional deep learning frameworks to gain more accurate structural representation of the underlying data.[2]

An introduction to topological domains

[edit]

One of the core concepts in topological deep learning is the domain upon which this data is defined and supported. In case of Euclidian data, such as images, this domain is a grid, upon which the pixel value of the image is supported. In a more general setting this domain might be a topological domain. Next, we introduce the most common topological domains that are encountered in a deep learning setting. These domains include, but not limited to, graphs, simplicial complexes, cell complexes, combinatorial complexes and hypergraphs.

Given a finite set S of abstract entities, a neighborhood function on S is an assignment that attach to every point in S a subset of S or a relation. Such a function can be induced by equipping S with an auxiliary structure. Edges provide one way of defining relations among the entities of S. More specifically, edges in a graph allow one to define the notion of neighborhood using, for instance, the one hop neighborhood notion. Edges however, limited in their modeling capacity as they can only be used to model binary relations among entities of S since every edge is connected typically to two entities. In many applications, it is desirable to permit relations that incorporate more than two entities. The idea of using relations that involve more than two entities is central to topological domains. Such higher-order relations allow for a broader range of neighborhood functions to be defined on S to capture multi-way interactions among entities of S.

Next we review the main properties, advantages, and disadvantages of some commonly studied topological domains in the context of deep learning, including (abstract) simplicial complexes, regular cell complexes, hypergraphs, and combinatorial complexes.

(a): A group S is made up of basic parts (vertices) without any connections.(b): A graph represents simple connections between its parts (vertices) that are elements of S.(c): A simplicial complex shows a way parts (relations) are connected to each other, but with strict rules about how they're connected.(d): Like simplicial complexes, a cell complex shows how parts (relations) are connected, but it's more flexible in how they're shaped (like 'cells').(f): A hypergraph shows any kind of connections between parts of S, but these connections aren't organized in any particular order.(e): A CC mixes elements from cell complexes (connections with order) and hypergraphs (varied connections), covering both kinds of setups.[2]

Comparisons among topological domains

[edit]

Each of the enumerated topological domains has its own characteristics, advantages, and limitations:

  • Simplicial complexes
    • Simplest form of higher-order domains.
    • Extensions of graph-based models.
    • Admit hierarchical structures, making them suitable for various applications.
    • Hodge theory can be naturally defined on simplicial complexes.
    • Require relations to be subsets of larger relations, imposing constraints on the structure.
  • Cell Complexes
    • Generalize simplicial complexes.
    • Provide more flexibility in defining higher-order relations.
    • Each cell in a cell complex is homeomorphic to an open ball, attached together via attaching maps.
    • Boundary cells of each cell in a cell complex are also cells in the complex.
    • Represented combinatorially via incidence matrices.
  • Hypergraphs
    • Allow arbitrary set-type relations among entities.
    • Relations are not imposed by other relations, providing more flexibility.
    • Do not explicitly encode the dimension of cells or relations.
    • Useful when relations in the data do not adhere to constraints imposed by other models like simplicial and cell complexes.
  • Combinatorial Complexes [2] :
    • Generalize and bridge the gaps between simplicial complexes, cell complexes, and hypergraphs.
    • Allow for hierarchical structures and set-type relations.
    • Combine features of other complexes while providing more flexibility in modeling relations.
    • Can be represented combinatorially, similar to cell complexes.

Hierarchical structure and set-type relations

[edit]

The properties of simplicial complexes, cell complexes, and hypergraphs give rise to two main features of relations on higher-order domains, namely hierarchies of relations and set-type relations.[2]

Rank function

[edit]

A rank function on a higher-order domain X is an order-preserving function rk: XZ, where rk(x) attaches a non-negative integer value to each relation x in X, preserving set inclusion in X. Cell and simplicial complexes are common examples of higher-order domains equipped with rank functions and therefore with hierarchies of relations.[2]

Set-type relations

[edit]

Relations in a higher-order domain are called set-type relations if the existence of a relation is not implied by another relation in the domain. Hypergraphs constitute examples of higher-order domains equipped with set-type relations. Given the modeling limitations of simplicial complexes, cell complexes, and hypergraphs, we develop the combinatorial complex, a higher-order domain that features both hierarchies of relations and set-type relations.[2]

Learning on topological spaces

[edit]
Learning Tasks on topological domains can be broadly classified into three categories : cell classification, cell prediction and complex classification [2].

The learning tasks in TDL can be broadly classified into three categories:[2]

  • Cell classification: Predict targets for each cell in a complex. Examples include triangular mesh segmentation, where the task is to predict the class of each face or edge in a given mesh.
  • Complex classification: Predict targets for an entire complex. For example, predict the class of each input mesh.
  • Cell prediction: Predict properties of cell-cell interactions in a complex, and in some cases, predict whether a cell exists in the complex. An example is the prediction of linkages among entities in hyperedges of a hypergraph.

In practice, to perform the aforementioned tasks, deep learning models designed for specific topological spaces must be constructed and implemented. These models, known as topological neural networks, are tailored to operate effectively within these spaces.

Topological neural networks

[edit]

Central to TDL are topological neural networks (TNNs), specialized architectures designed to operate on data structured in topological domains.[3][2] Unlike traditional neural networks tailored for grid-like structures, TNNs are adept at handling more intricate data representations, such as graphs, simplicial complexes, and cell complexes. By harnessing the inherent topology of the data, TNNs can capture both local and global relationships, enabling nuanced analysis and interpretation.

Message passing topological neural networks

[edit]

In a general topological domain, higher-order message passing involves exchanging messages among entities and cells using a set of neighborhood functions.

Definition: Higher-Order Message Passing on a General Topological Domain

Higher order message passing is a deep learning model defined on a topological domain and relies on message passing information among entities in the underlying domain in order to perform a learning task [2].

Let be a topological domain. We define a set of neighborhood functions on . Consider a cell and let for some . A message between cells and is a computation dependent on these two cells or the data supported on them. Denote as the multi-set , and let represent some data supported on cell at layer . Higher-order message passing on ,[2][18] induced by , is defined by the following four update rules:

  1. , where is the intra-neighborhood aggregation function.
  2. , where is the inter-neighborhood aggregation function.
  3. , where are differentiable functions.

Some remarks on Definition above are as follows.

First, Equation 1 describes how messages are computed between cells and . The message is influenced by both the data and associated with cells and , respectively. Additionally, it incorporates characteristics specific to the cells themselves, such as orientation in the case of cell complexes. This allows for a richer representation of spatial relationships compared to traditional graph-based message passing frameworks.

Second, Equation 2 defines how messages from neighboring cells are aggregated within each neighborhood. The function aggregates these messages, allowing information to be exchanged effectively between adjacent cells within the same neighborhood.

Third, Equation 3 outlines the process of combining messages from different neighborhoods. The function aggregates messages across various neighborhoods, facilitating communication between cells that may not be directly connected but share common neighborhood relationships.

Fourth, Equation 4 specifies how the aggregated messages influence the state of a cell in the next layer. Here, the function updates the state of cell based on its current state and the aggregated message obtained from neighboring cells.

Non-message passing topological neural networks

[edit]

While the majority of TNNs follow the message passing paradigm from graph learning, several models have been suggested that do not follow this approach. For instance, Maggs et al.[19] leverage geometric information from embedded simplicial complexes, i.e., simplicial complexes with high-dimensional features attached to their vertices.This offers interpretability and geometric consistency without relying on message passing. Furthermore, in [20] a contrastive loss-based method was suggested to learn the simplicial representation.

Applications

[edit]

TDL is rapidly finding new applications across different domains, including data compression,[21] enhancing the expressivity and predictive performance of graph neural networks,[22][23][24] action recognition,[25] and trajectory prediction.[26]

References

[edit]
  1. ^ Uray, Martin; Giunti, Barbara; Kerber, Michael; Huber, Stefan (2024-05-17), Topological Data Analysis in smart manufacturing, doi:10.48550/arXiv.2310.09319, retrieved 2024-07-24
  2. ^ a b c d e f g h i j k l Hajij, M.; Zamzmi, G.; Papamarkou, T.; Miolane, N.; Guzmán-Sáenz, A.; Ramamurthy, K. N.; Schaub, M. T. (2022), Topological deep learning: Going beyond graph data, arXiv:2206.00606
  3. ^ a b Papillon, M.; Sanborn, S.; Hajij, M.; Miolane, N. (2023). "Architectures of topological deep learning: A survey on topological neural networks". arXiv:2304.10031 [cs.LG].
  4. ^ Ebli, S.; Defferrard, M.; Spreemann, G. (2020), Simplicial neural networks, arXiv:2010.03633
  5. ^ Battiloro, C.; Testa, L.; Giusti, L.; Sardellitti, S.; Di Lorenzo, P.; Barbarossa, S. (2023), Generalized simplicial attention neural networks, arXiv:2309.02138
  6. ^ Yang, M.; Isufi, E. (2023), Convolutional learning on simplicial complexes, arXiv:2301.11163
  7. ^ Chen, Y.; Gel, Y. R.; Poor, H. V. (2022), "BScNets: Block simplicial complex neural networks", Proceedings of the AAAI Conference on Artificial Intelligence, 36 (6): 6333–6341, arXiv:2112.06826, doi:10.1609/aaai.v36i6.20583
  8. ^ Hofer, Christoph; Kwitt, Roland; Niethammer, Marc; Uhl, Andreas (2017). "Deep Learning with Topological Signatures". Advances in Neural Information Processing Systems. 30. Curran Associates, Inc.
  9. ^ Carriere, Mathieu; Chazal, Frederic; Ike, Yuichi; Lacombe, Theo; Royer, Martin; Umeda, Yuhei (2020-06-03). "PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures". Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. PMLR: 2786–2796.
  10. ^ Kim, Kwangho; Kim, Jisu; Zaheer, Manzil; Kim, Joon; Chazal, Frederic; Wasserman, Larry (2020). "PLLay: Efficient Topological Layer based on Persistent Landscapes". Advances in Neural Information Processing Systems. 33. Curran Associates, Inc.: 15965–15977.
  11. ^ Gabrielsson, Rickard Brüel; Nelson, Bradley J.; Dwaraknath, Anjan; Skraba, Primoz (2020-06-03). "A Topology Layer for Machine Learning". Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. PMLR: 1553–1563.
  12. ^ Bianchini, Monica; Scarselli, Franco (2014). "On the Complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures". IEEE Transactions on Neural Networks and Learning Systems. 25 (8): 1553–1565. doi:10.1109/TNNLS.2013.2293637. ISSN 2162-237X.
  13. ^ Naitzat, Gregory; Zhitnikov, Andrey; Lim, Lek-Heng (2020). "Topology of Deep Neural Networks" (PDF). Journal of Machine Learning Research. 21 (1): 184:7503–184:7542. ISSN 1532-4435.
  14. ^ Birdal, Tolga; Lou, Aaron; Guibas, Leonidas J; Simsekli, Umut (2021). "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks". Advances in Neural Information Processing Systems. 34. Curran Associates, Inc.: 6776–6789.
  15. ^ Ballester, Rubén; Clemente, Xavier Arnal; Casacuberta, Carles; Madadi, Meysam; Corneanu, Ciprian A.; Escalera, Sergio (2024). "Predicting the generalization gap in neural networks using topological data analysis". Neurocomputing. 596: 127787. doi:10.1016/j.neucom.2024.127787.
  16. ^ Rieck, Bastian; Togninalli, Matteo; Bock, Christian; Moor, Michael; Horn, Max; Gumbsch, Thomas; Borgwardt, Karsten (2018-09-27). "Neural Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology". International Conference on Learning Representations.
  17. ^ Dupuis, Benjamin; Deligiannidis, George; Simsekli, Umut (2023-07-03). "Generalization Bounds using Data-Dependent Fractal Dimensions". Proceedings of the 40th International Conference on Machine Learning. PMLR: 8922–8968.
  18. ^ Hajij, M.; Istvan, K.; Zamzmi, G. (2020), Cell complex neural networks, arXiv:2010.00743
  19. ^ Maggs, Kelly; Hacker, Celia; Rieck, Bastian (2023-10-13). "Simplicial Representation Learning with Neural k-Forms". International Conference on Learning Representations.
  20. ^ Ramamurthy, K. N.; Guzmán-Sáenz, A.; Hajij, M. (2023), Topo-mlp: A simplicial network without message passing, pp. 1–5
  21. ^ Battiloro, C.; Di Lorenzo, P.; Ribeiro, A. (September 2023), Parametric dictionary learning for topological signal representation, IEEE, pp. 1958–1962
  22. ^ Bodnar, Cristian; Frasca, Fabrizio; Wang, Yuguang; Otter, Nina; Montufar, Guido F.; Lió, Pietro; Bronstein, Michael (2021-07-01). "Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks". Proceedings of the 38th International Conference on Machine Learning. PMLR: 1026–1037.
  23. ^ Bodnar, Cristian; Frasca, Fabrizio; Otter, Nina; Wang, Yuguang; Liò, Pietro; Montufar, Guido F; Bronstein, Michael (2021). "Weisfeiler and Lehman Go Cellular: CW Networks". Advances in Neural Information Processing Systems. 34. Curran Associates, Inc.: 2625–2640.
  24. ^ Horn, Max; Brouwer, Edward De; Moor, Michael; Moreau, Yves; Rieck, Bastian; Borgwardt, Karsten (2021-10-06). "Topological Graph Neural Networks". International Conference on Learning Representations.
  25. ^ Wang, C.; Ma, N.; Wu, Z.; Zhang, J.; Yao, Y. (August 2022), Survey of Hypergraph Neural Networks and Its Application to Action Recognition, Springer Nature Switzerland, pp. 387–398
  26. ^ Roddenberry, T. M.; Glaze, N.; Segarra, S. (July 2021), Principled simplicial neural networks for trajectory prediction, PMLR, pp. 9020–9029, arXiv:2102.10058