Jump to content

Tetraethoxymethane

From Wikipedia, the free encyclopedia
Tetraethoxymethane
Names
Preferred IUPAC name
(Triethoxymethoxy)ethane
Other names
Tetraethyl orthocarbonate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.000.985 Edit this at Wikidata
EC Number
  • 201-082-2
UNII
  • InChI=1S/C9H20O4/c1-5-10-9(11-6-2,12-7-3)13-8-4/h5-8H2,1-4H3
    Key: CWLNAJYDRSIKJS-UHFFFAOYSA-N
  • CCOC(OCC)(OCC)OCC
Properties
C9H20O4
Molar mass 192.25 g·mol−1
Appearance liquid
Density 0.919
Boiling point 159.5 °C (319.1 °F; 432.6 K)
Hazards
GHS labelling:
GHS02: Flammable GHS07: Exclamation mark
H226, H315, H319, H335
Related compounds
Other cations
Tetraethoxysilane
Related compounds
Tetramethoxymethane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tetraethoxymethane is a chemical compound which is formally formed by complete ethylation of the hypothetical orthocarbonic acid C(OH)4 (orthocarbonic acid violates the Erlenmeyer rule and is unstable in free state).

History

[edit]

Tetraethoxymethane was described the first time in 1864.[1]

Synthesis

[edit]

The preparation of tetraethoxymethane from the highly toxic trichloronitromethane is known in the literature[1][2][3][4] and achieves only yields of 46-49[3] to 58%:[4]

TEOC aus Chlorpikrin

The obvious synthetic route from tetrachloromethane does not provide the desired product, as in the homologous tetramethoxymethane.[5]

Starting from the less toxic trichloroacetonitrile (compared with trichloronitromethane), higher yields can be obtained (up to 85%).[6] An alternative reaction, bypassing problematic reactants, is the reaction of dialkyltin dialkoxides with carbon disulfide at elevated temperature in an autoclave:[7]

TEOC aus CS2

Another route reacts thallous ethoxide with carbon disulfide in dry methylene dichloride.[8]

A more recent synthesis starts directly from sodium ethoxide, tin(IV)chloride, and carbon disulfide.[9]

Properties

[edit]

Tetraethoxymethane is a water-clear, aromatic or fruity smelling,[10] liquid of low-viscosity which is unstable against strong acids and strong bases.[11]

Uses

[edit]

Tetraethoxymethane can be used as a solvent and for the alkylation of CH-acidic compounds (e.g. phenols and carboxylic acids). In addition, it reacts with amines, enol ethers and sulfonamides,[12] whereby spiro compounds can also be obtained. Spiro orthocarbonates (SOCs)[13] are of some industrial interest, as they are used as additives for reducing shrinkage during the polymerization of epoxides (they are used as expanding monomers).[14]

References

[edit]
  1. ^ a b H. Bassett, Ueber das vierfach-basische kohlensaure Aethyl, Ann. 132, 54 (1864), doi:10.1002/jlac.18641320106.
  2. ^ H. Tieckelmann, H.W. Post, The preparation of methyl, ethyl, propyl, and butyl orthocarbonates, J. Org. Chem., 13 (2), 265–267 (1948), doi:10.1021/jo01160a014.
  3. ^ a b "Ethyl Orthocarbonate". Organic Syntheses. doi:10.15227/orgsyn.032.0068.
  4. ^ a b Europäische Patentschrift EP 0881212 B1, Production method of aminobenzene compound, Erfinder: H. Hashimoto et al., Anmelder: Takeda Chemical Industries, Ltd., veröffentlicht am 30. Oktober 2001.
  5. ^ R.H. De Wolfe, Carboxylic ortho acid derivatives: preparation and synthetic applications, Organic Chemistry, Vol. 14, Academic Press, Inc. New York – London, 1970, ISBN 978-0-12-214550-6.
  6. ^ US-Patent US 6825385, Process for the preparation of orthocarbonates, Erfinder: G. Fries, J. Kirchhoff, Anmelder: Degussa AG, erteilt am 30. November 2004.
  7. ^ S. Sakai et al., Reaction of Dialkyltin Dialkoxides with Carbon Disulfide at Higher Temperature. Preparation of Orthocarbonates, J. Org. Chem., 36 (9), 1176 (1971), doi:10.1021/jo00808a002.
  8. ^ Shizuyoshi Sakai, Yoshitaka Kuroda, Yoshio Ishii (1972): "Preparation of orthocarbonates from thallous alkoxides and carbon disulfide". Journal of Organic Chemistry, volume 37, issue 25, pages 4198–4200. doi:10.1021/jo00798a056
  9. ^ S. Sakai et al., A new method for preparation of tetraalkyl orthocarbonates from sodium alkoxides, tetrachlorostannane, and carbon disulfide, Synthesis 1984 (3), 233–234, doi:10.1055/s-1984-30785.
  10. ^ J. H. Ruth, Odor Thresholds and Irritation Levels of Several Chemical Substances: A Review, Am. Ind. Hyg. Assoc. J. 47, A-142 – A-151, (1986).
  11. ^ Sigma-Aldrich Co., product no. {{{id}}}.
  12. ^ W. Kantlehner et al., Die präparative Chemie der O- und N-funktionellen Orthokohlensäure-Derivate, Synthesis, 1977, 73–90.
  13. ^ Vodak, David T.; Braun, Matthew; Iordanidis, Lykourgos; Plévert, Jacques; Stevens, Michael; Beck, Larry; Spence, John C. H.; O'Keeffe, Michael; Yaghi, Omar M. (2002-04-11). "One-Step Synthesis and Structure of an Oligo(spiro-orthocarbonate)". Journal of the American Chemical Society. 124 (18). American Chemical Society (ACS): 4942–4943. doi:10.1021/ja017683i. ISSN 0002-7863. PMID 11982342.
  14. ^ R. Acosta Ortiz et al., Novel diol spiro orthocarbonates derived from glycerol as anti-shrinkage additives for the cationic photopolymerization of epoxy monomers, Polymer International, 59(5), 680–685 (2010), doi:10.1002/pi.2755.