Template:Transclude list item excerpt/testcases
This is the template test cases page for the sandbox of Template:Transclude list item excerpt. to update the examples. If there are many examples of a complicated template, later ones may break due to limits in MediaWiki; see the HTML comment "NewPP limit report" in the rendered page. You can also use Special:ExpandTemplates to examine the results of template uses. You can test how this page looks in the different skins and parsers with these links: |
Errors
[edit]{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Basic
[edit]{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Weed control is a type of pest control, which attempts to stop or reduce growth of weeds, especially noxious weeds, with the aim of reducing their competition with desired flora and fauna including domesticated plants and livestock, and in natural settings preventing non native species competing with native species. Weed control is important in agriculture. Methods include hand cultivation with hoes, powered cultivation with cultivators, smothering with mulch, lethal wilting with high heat, burning, and chemical control with herbicides (weed killers). (Full article...) |
Weed control is a type of pest control, which attempts to stop or reduce growth of weeds, especially noxious weeds, with the aim of reducing their competition with desired flora and fauna including domesticated plants and livestock, and in natural settings preventing non native species competing with native species. Weed control is important in agriculture. Methods include hand cultivation with hoes, powered cultivation with cultivators, smothering with mulch, lethal wilting with high heat, burning, and chemical control with herbicides (weed killers). (Full article...) |
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
The Gulf wobbegong or banded wobbegong (Orectolobus halei) is a species of carpet shark in the family Orectolobidae, found in southern Australia between Southport, Queensland and Norwegian Bay, Western Australia. Orectolobus halei is very similar to the ornate wobbegong, O. ornatus, of which it was treated as a synonym until 2006. Despite this, genetic evidence suggests that O. halei is more closely related to the largely sympatric spotted wobbegong, O. maculatus, than either are to the generally more northern O. ornatus. Compared to O. ornatus, O. halei has more dermal lobes at the posterior preorbital group, a shorter pelvic fin to anal fin interspace, larger pectoral fins, a larger head and larger claspers when mature. It also reaches a significantly larger size, growing to a maximum length of 2.9 metres (9.5 ft), while O. ornatus only reaches 1.17 metres (3.8 ft). Reproduction is ovoviviparous. (Full article...) |
The Gulf wobbegong or banded wobbegong (Orectolobus halei) is a species of carpet shark in the family Orectolobidae, found in southern Australia between Southport, Queensland and Norwegian Bay, Western Australia. Orectolobus halei is very similar to the ornate wobbegong, O. ornatus, of which it was treated as a synonym until 2006. Despite this, genetic evidence suggests that O. halei is more closely related to the largely sympatric spotted wobbegong, O. maculatus, than either are to the generally more northern O. ornatus. Compared to O. ornatus, O. halei has more dermal lobes at the posterior preorbital group, a shorter pelvic fin to anal fin interspace, larger pectoral fins, a larger head and larger claspers when mature. It also reaches a significantly larger size, growing to a maximum length of 2.9 metres (9.5 ft), while O. ornatus only reaches 1.17 metres (3.8 ft). Reproduction is ovoviviparous. (Full article...) |
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
The Avis Dam is a dam outside of Windhoek, Namibia. It was built in 1933 by the South African colonial authorities. It first flooded in April 1934, but only exceeded 75% again in 2007. (Full article...) | The Avis Dam is a dam outside of Windhoek, Namibia. It was built in 1933 by the South African colonial authorities. It first flooded in April 1934, but only exceeded 75% again in 2007. (Full article...) |
Section
[edit]{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
The Nadarivatu Dam, also known as the Korolevu Dam, is a concrete gravity dam on the upper reaches of the Sigatoka River in Nadarivatu District of Nadroga-Navosa Province, Fiji. The primary purpose of the dam is to generate hydroelectric power in a 41.7 megawatts (55,900 hp) run-of-the-river scheme. The Nadarivatu Hydropower Scheme was first identified in 1977 during a hydropower study. Detailed plans for the project were developed in 2002 and major construction began in 2009. The power station was commissioned on 7 September 2012 but an inauguration ceremony led by Prime Minister Frank Bainimarama was held a week later on 14 September. Funding and loans for the project was provided by several organizations to include the China Development Bank (US$70 Million), Fiji Electricity Authority bonds (US$50 million), ADZ Bank (US$30 million). The 40 m (130 ft) tall dam diverts water from the Sigatoka River through a 3,225 metres (10,581 ft) long headrace/penstock tunnel to a power station along the Ba River to the southwest. The power station contains two 20.85 megawatts (27,960 hp) Pelton turbine-generators. The drop in elevation between the reservoir and the power station affords a gross hydraulic head (water drop) of 335.7 metres (1,101 ft). (Full article...) | The Nadarivatu Dam, also known as the Korolevu Dam, is a concrete gravity dam on the upper reaches of the Sigatoka River in Nadarivatu District of Nadroga-Navosa Province, Fiji. The primary purpose of the dam is to generate hydroelectric power in a 41.7 megawatts (55,900 hp) run-of-the-river scheme. The Nadarivatu Hydropower Scheme was first identified in 1977 during a hydropower study. Detailed plans for the project were developed in 2002 and major construction began in 2009. The power station was commissioned on 7 September 2012 but an inauguration ceremony led by Prime Minister Frank Bainimarama was held a week later on 14 September. Funding and loans for the project was provided by several organizations to include the China Development Bank (US$70 Million), Fiji Electricity Authority bonds (US$50 million), ADZ Bank (US$30 million). The 40 m (130 ft) tall dam diverts water from the Sigatoka River through a 3,225 metres (10,581 ft) long headrace/penstock tunnel to a power station along the Ba River to the southwest. The power station contains two 20.85 megawatts (27,960 hp) Pelton turbine-generators. The drop in elevation between the reservoir and the power station affords a gross hydraulic head (water drop) of 335.7 metres (1,101 ft). (Full article...) |
Parameter "more"
[edit]|more=
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Full article...) |
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Full article...) |
|more=
(an empty value){{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Full article...) |
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Full article...) |
|more=Foobar
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Foobar) |
Cycads /ˈsaɪkædz/ are seed plants that typically have a stout and woody (ligneous) trunk with a crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants of a species are either male or female. Cycads vary in size from having trunks only a few centimeters to several meters tall. They typically grow slowly and have long lifespans. Because of their superficial resemblance to palms or ferns, they are sometimes mistaken for them, but they are not closely related to either group. Cycads are gymnosperms (naked-seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. Both male and female cycads bear cones (strobili), somewhat similar to conifer cones. Cycads have been reported to fix nitrogen in association with various cyanobacteria living in the roots (the "coralloid" roots). These photosynthetic bacteria produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten directly as a source of flour by humans or by wild or feral animals such as bats, and humans may eat these animals. It is hypothesized that this is a source of some neurological diseases in humans. Another defence mechanism against herbivores is the accumulation of toxins in seeds and vegetative tissues; through horizontal gene transfer, cycads have acquired a family of genes (fitD) from a microbial organism, most likely a fungus, which gives them the ability to produce an insecticidal toxin. Cycads all over the world are in decline, with four species on the brink of extinction and seven species having fewer than 100 plants left in the wild.[better source needed] (Foobar) |
|more=false
{{Transclude list item excerpt}} | {{Transclude list item excerpt/sandbox}} |
---|---|
Plant taxonomy is the science that finds, identifies, describes, classifies, and names plants. It is one of the main branches of taxonomy (the science that finds, describes, classifies, and names living things). Plant taxonomy is closely allied to plant systematics, and there is no sharp boundary between the two. In practice, "plant systematics" involves relationships between plants and their evolution, especially at the higher levels, whereas "plant taxonomy" deals with the actual handling of plant specimens. The precise relationship between taxonomy and systematics, however, has changed along with the goals and methods employed. Plant taxonomy is well known for being turbulent, and traditionally not having any close agreement on circumscription and placement of taxa. See the list of systems of plant taxonomy. |
Plant taxonomy is the science that finds, identifies, describes, classifies, and names plants. It is one of the main branches of taxonomy (the science that finds, describes, classifies, and names living things). Plant taxonomy is closely allied to plant systematics, and there is no sharp boundary between the two. In practice, "plant systematics" involves relationships between plants and their evolution, especially at the higher levels, whereas "plant taxonomy" deals with the actual handling of plant specimens. The precise relationship between taxonomy and systematics, however, has changed along with the goals and methods employed. Plant taxonomy is well known for being turbulent, and traditionally not having any close agreement on circumscription and placement of taxa. See the list of systems of plant taxonomy. |
References
[edit]This section contains references and notes. It should be empty.