Template:Infobox combinatorial classes
This template uses TemplateStyles: |
Usage
[edit]The Template:infobox combinatorial classes generates a right-hand side infobox, based on the specified parameters. To use this template, copy the following code in your article and fill in as appropriate:
{{{intro}}} | |
Parameters | {{{parameters}}} |
---|---|
Support | {{{support}}} |
Asymptotic | {{{asymptotic}}} |
Ordinary generating function | {{{OGF}}} |
radius of convergence of the OGF | {{{OGF radius}}} |
Exponential generating function | {{{EGF}}} |
its radius | {{{EGF radius}}} |
Poisson generating function | {{{PGF}}} |
Lambert series | {{{LS}}} |
its radius | {{{LS radius}}} |
Bell series | {{{BS}}} |
its radius | {{{BS radius}}} |
Dirichlet series generating function | {{{DGF}}} |
Polynomial sequence generating function | {{{PSGF}}} |
its radius | {{{PSGF radius}}} |
{{{PGF radius}}} |
{{Infobox combinatorial classes
| name =
| notation =
| intro =
| parameters =
| nth_element =
| asymptotic =
| support =
| OGF =
| OGF radius =
| EGF =
| EGF radius =
| PGF =
| PGF radius =
| LS =
| LS radius =
| BS =
| BS radius =
| DGF =
| DGF radius =
| PSGF =
| PSGF radius =
}}
Parameters
[edit]- name — Name at the top of the infobox; should be the name of the sequence, without the word sequence. (e.g. "Fibonnacci", "Factorials")
- notation — How the sequence (or its -th element) is usually denoted. For example, for the sequence of factorials.
- parameters — parameters of the sequence family.
- support — Where the sequence is defined and non-zero. (e.g. it is the place to state that a sequence has only value at even position, or at prime positions.)
- nth element — The place to give the exact value of the -th element of the sequence. (e.g. for fibonnaci number, it would be )
- asymptotic — A function with the same domain than the sequence, which is asymptotically equivalent to it. (e.g. for fibonnaci number, it would be )
- OGF, EGF, PGF, LS, BS, DGF, PSGF are defined as in the page Generating function
- OGF radius, EGF radius, PGF radius, LS radius, BS radius, DGF radius, PSGF radius the radius of the previously defined functions
TemplateData
[edit]TemplateData for Infobox combinatorial classes
No description.
Parameter | Description | Type | Status | |
---|---|---|---|---|
box_width | box_width | no description | Unknown | optional |
Name | name | Name at the top of the infobox; should be the name of the sequence, without the word sequence
| Unknown | optional |
notation | notation | no description | Unknown | optional |
intro | intro | no description | Unknown | optional |
parameters | parameters | no description | Unknown | optional |
support | support | Where the sequence is defined and non-zero.
| Unknown | optional |
nth element | nth element | no description | Unknown | optional |
asymptotic | asymptotic | A function with the same domain than the sequence, which is asymptotically equivalent to it.
| Unknown | optional |
OGF | OGF | The ordinary generating function of the sequence | Unknown | optional |
its radius | radius_OGF | radius of convergence of the OGF
| Number | optional |
EGF | EGF | The exponential generating function of the sequence | Unknown | optional |
radius_EGF | radius_EGF | the radius of convergence of the EGF | Unknown | optional |
PGF | PGF | The poisson generating function of the sequence | Unknown | optional |
radius_PGF | radius_PGF | the radius of convergence of the PGF | Unknown | optional |
LS | LS | The Lambert series of the sequence | Unknown | optional |
radius_LS | radius_LS | the radius of convergence of the LS | Unknown | optional |
BS | BS | The Bell series of the sequence | Unknown | optional |
radius_BS | radius_BS | the radius of convergence of the BS | Unknown | optional |
DGF | DGF | The Dirichlet series generating functions of the sequence | Unknown | optional |
radius_DGF | radius_DGF | the radius of convergence of the DGF | Unknown | optional |
PSGF | PSGF | The Polynomial Sequence Generating Function of the sequence | Unknown | optional |
radius_PSGF | radius_PSGF | the radius of convergence of the PSGF | Unknown | optional |