Jump to content

Talk:Quantity

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

Substantial revision

[edit]

I have made a substantial revision to previous version.

[AA: which we are trying to revise properly in a cooperative spirit].

I think intro needs to be clear, to the point, and orient the reader to the main points. There were a number of uncited statments and the essence of key points appeared to depend heavily on Aristotle, whereas there have been major developments since!

[AA: we shouldn't undervalue the background knowledge on quantity].

I have omitted certain statements that were either very difficult to follow or erroneous as formulated: e.g. the statement that units are not divisible is not correct unqualified - units of continuous quantity are divisible, units of 'multitudes' are not (e.g. an applie is no longer a unit in a count of applies if sliced in half). I am open to discussion and debate on these points but I strongly urge citations to justify the re-introduction of omissions. The article still needs further revision and omissions, but this revision is a start. Holon 14:00, 21 February 2006 (UTC)[reply]

Introduction

[edit]

HOLON insists on such an intro: In science and philosophy a quantity is a property or relation that exists in a range of magnitudes, such as the range of all lengths. [AA: in reality (as a matter of fact), quantity is a basic property of things that exists as magnitudes and multitudes]. All the following is irrelevant to introduction or just defective and unverified: <Examples of quantitative properties are mass, time, distance, heat, and angular separation.> [ AA: in fact, the cases of quantitative properties are both physical quantities and mathematical quantities, as well as numbers].

In classical terms, two magnitudes of a continuous quantity stand in relation to one another as ratios which, in turn, are real numbers. Such continuous quantities possess a particular structure, which was first explicitly characterized by Hölder (1901) as a set of axioms which define such features as identites and relations between mangitudes.[AA comments: unverified statement]. The term quantity may also refer to a multitude such as a number of apples or sub-atomic particles [AA comment: this property must be included in the definition, not mentioned at the end]

AZAMAT included the following in intro: "Commonly, quantity is viewed as the state of being much, or the basic property of things existing as magnitudes or multitudes." Quantity is not the basic property of things existing as magnitudes or multitudes. A given thing may have many properties that are quantitative, such as mass, volume, charge and so on. Quantity is a type of property that exists in a range of magnitudes. [right is Quantity is a type of property existing as magnitude and multitude]. Azamat also included the following in intro: "Of entities which pertain to quantities, some are such by their inner nature (as number), while others are functioning as states (properties, dimensions, attributes) and modifications like as heavy and light, long and short, broad and narrow, small and great, or much and little." The statement: "of entities which pertain to quantities ..." is confusing -- entities may possess quantitative properties, but it is unclear what is meant by entities which pertain to quantities. Is this supposed to mean abstract entities which are quantities?? [read as: of things which pertain to quantities] In what sense do they 'function as states'? [As STATES of Substances or Objects]. I have replaced the introduction, [worsening it]. Please discuss these changes: they do not enhance the article. Holon 12:23, 23 February 2006 (UTC)[reply]

Various sections other than the introduction are also unclear, but I have not had time to make comments. I will do so soon. [AA: don't do anything, before discussion]. The article must be balanced. Quantity is important in science, not only philosophy. Regards. Holon 10:44, 24 February 2006 (UTC)[reply]

I tried working with some ideas I had and I got this for an intro:

"Quantity refers to number or amount as a property of abstract or concrete objects. In modern thinking it is commonly compared with the notion of quality. In the case of abstract objects, quantity and relationships between quantities have mathematical foundations. With concrete objects, quantities are measurements or observations of physical objects or systems, such as position measuring relative distances or temperature measuring the average energy of particles’ speed in a system.

In mathematics, quantity is essentially another term for number. Numbers are said to be discrete or continuous (see reals/real numbers/continuum). Numbers can also be further characterized by certain notable subsets of real numbers, the rational numbers being an example. In certain contexts quantities are grouped together in ways like vectors, matrices, tensors, sequences, and more generally as sets."

As I see there is a somewhat heated debate on what to have in the intro (the current one seems to me unintelligible), I'll leave my ideas for everyone else to work with, so feel free use it any way. Tachikoma's All Memory 04:20, 15 March 2007 (UTC)[reply]


— Preceding unsigned comment added by 82.173.205.132 (talk) 12:10, 23 February 2013 (UTC)[reply]

Quantitative Relationsips

[edit]

I omitted the section due to problems with the following:

There are three sorts of relationships between different types of quantities, namely ratio, rate, and scale. The ratio follows the classic definition of Euclid and expressed as a quotient. The ratio is always between two quantities of the same kind, i.e., between commensurable magnitudes or commensurable multitudes.

Firstly, in what sense is scale a relationship? [AA: there are two senses of 'scale', as a relative magnitude or as a proportion, the ratio between the size of something and its representation, we say the scale of mapping. Secondly, stating that relationships are always between quantities of the same kind is problematic. F=MA implies M=F/A which is a ratio of two different types of quantities.

[AA comment: it is a ratio (kindly don't mix with relationships generally), which is between commensurable quantities; while A is a rate (of increase of velocity].

Although I happen to agree a case can be made for the contention, it is not a simple issue and needs to be better explained and justified to say the least.

[AA: the issue is not really so complicated].

Thirdly, on what basis is it claimed there are three sorts of relationship? To use the same example, what about does F=MA? (rate is one relationship involved, but not the only one)

[AA: please don't mix the ratio, the relative magnitudes of commensurable quantities, with the rate, a magnitude related to a time unit].

Lastly, although this could be fixed, the use of colons and semicolons in the subsequent lists was also of a poor standard. Holon 05:15, 25 February 2006 (UTC) [AA: also let's edit the content in the Microsoft word editor, not on-line, for typos may appear].[reply]

Quantity in mathematics

[edit]

I would appreciate comment on this section -- I think it needs serious attention if it is to remain in the article. For example, the following statement is in need a lot of work: The essential part of mathematical quantities is made up with a collection variables each assuming a set of values and coming as scalar, vectors, or tensors, and functioning as infinitesimal, arguments, independent or dependent variables, or random and stochastic quantities. Why not just say quantities in mathematics can be scalars, vectors or tensors?

[AZAMAT: in mathematics, there are numerical quantities, variable quantities, and constant quantities. Scalars, vectors, and tensors are just sorts of variable quantities]

The use of the term functioning is very confusing given it appears the text refers in part to functions. Why not just say, for example, that in mathematics, a quantity may be expressed as a function of one or more other quantities? Holon 09:04, 25 February 2006 (UTC)[reply]

(Talks to self: Remember WP:CIVIL, remember WP:CIVIL.)
I can assert, without fear of contradiction by mathematicians, that this section is neither mathematics nor can easily be interpreted to refer to mathematics. To forstall attempts to impune my intelligence, I should let you know that my IQ was measured at over 160. But this shouldn't be necessary. The distinction between "magnitude" and "multitude" is real (pun intended), but not well expressed. As for scalars, vectors, and tensors -- although I don't think a vector or tensor can be a "quantity", the present state of the article and one of the comments above has conflated the dimensionality of the output (scalar, vector, tensor), with the dimensionality of the input (scalar, scalar field aka function). Arthur Rubin | (talk) 18:01, 25 February 2006 (UTC)[reply]
On second thought -- are you (AA) referring to vectors and tensors as representing the value of the corresponding multilinear form? That might make them "quantities". However, a line or line segment is still not a quantity, in reference to the geometry example. Arthur Rubin | (talk) 18:10, 25 February 2006 (UTC)[reply]

Let's try to reach agreement on a definition, as a first step

[edit]

Azamat, let’s focus on some of the points and how we might best express them, Okay?

In science and philosophy a quantity is a property or relation that exists in a range of magnitudes, such as the range of all lengths.

AA: in reality, quantity is a basic property of things that exists as magnitudes and multitudes
In what reality, according to whom or what criteria? Reality is a theory-laden term. Would you please provide examples of things that exist as magnitudes and multitudes. I think doing so may help to clarify a pivotal point so we can move on.

AA: right is Quantity is a type of property existing as magnitude and multitude

I agree -- quantity is a kind of property which exists as magnitude or multitude -- so hopefully we can clarify the problem and agree on a way to express the definition.

Such continuous quantities possess a particular structure, which was first explicitly characterized by Hölder (1901) as a set of axioms which define such features as identites and relations between mangitudes.

AA comments: unverified statement, )
Azamat, please read the text carefully: the statement is clearly cited.

I mean a public accessibility of the reference.

Let's focus on points of difference first, see if we can agree. Later on, if necessary we may need to agree to disagree on certain points and to each put alternative points of view across.Holon 03:14, 26 February 2006 (UTC)[reply]

Update. AA, I have attempted to merge our introductions as a starting point. On a specific point, a relation such as an angle (e.g. between two pieces of metal) is a fundamental kind of quantity, so I have retained this in the introduction (citation if you wish). I think we need to clarify quantity in mathematics before even trying to include reference to it in the intro, although some reference is of course implied as things stand. Holon 09:44, 26 February 2006 (UTC)[reply]


It is a good try but still doesn't impress as a part of feature article, and i feel some discomfort with its logical coherency. Consider for your attention or revision the following allighment of both intro with a minimum disturbance of the inner logic of both parts.

Quantity is a kind of property which exists as magnitude or multitude. It is among the basic classes of things along with quality, substance, change, and relation. Quantity was first introduced as quantum, an entity having quantity. Being a fundamental term, quantity is used to refer to any type of quantitative properties or attributes of things. Some quantities are such by their inner nature (as number), while others are functioning as states (properties, dimensions, attributes) of things like as heavy and light, long and short, broad and narrow, small and great, or much and little. Two basic divisions of quantity, magnitude and multitude (or number), imply the principal distinction between continuity (continuum) and discontinuity. Under the names of multitude come what is discontinuous and discrete and divisible into indivisibles, all cases of collective nouns: army, fleet, flock, government, company, party, people, chorus, crowd, mess, and number. Under the names of magnitude come what is continuous and unified and divisible into divisibles, all cases of non-collective nouns: the universe, matter, mass, energy, liquid, material, animal, plant, tree. Along with analyzing its nature and classification, the issues of quantity involve such closely related topics as the relation of magnitudes and multitudes, dimensionality, equality, proportion, the measurements of quantities, the units of measurements, number and numbering systems, the types of numbers and their relations to each other as numerical ratios. Thus quantity is a property that exists in a range of magnitudes or multitudes. For example, mass, time, distance, heat, and angular separation are among the familiar examples of quantitative properties. Two magnitudes of a continuous quantity have to one another the ratio which a number has to a number. Such continuous quantities possess a particular structure, which was explicitly characterized by Hölder (1901) as a set of axioms which define such features as identities and relations between magnitudes.


Seeing your sincere intent to produce the quality article, i made some modifications and removed all the comments irrelevant to the matter (if something missed feel free to delete it). Azamat Abdoullaev 11:44, 28 February 2006 (UTC)[reply]

Holon, hearing no comment from you, i put a new version of intro; feel free to revise it. Azamat Abdoullaev 08:33, 1 March 2006 (UTC)[reply]

Thanks, I will take a look soon. Holon 09:05, 1 March 2006 (UTC)[reply]

Magnitudes

[edit]

Azamat, I would like to clarify an important point regarding the following:

Under the names of magnitude come what is continuous and unified and divisible into divisibles, all cases of non-collective nouns: the universe, matter, mass, energy, liquid, material, animal, plant, tree.

I do not follow precisely what this is trying to say: it may be the way you use English, I'm not sure. What exactly do you mean by "Under the names of magnitude come ..."? An issue here is that liquid is not a quantity. Properties of liquids, such as density and temperature, are quantities. The same issue applies to animal, plant, and so forth. I can change this again but we may just keep going around in circles if we don't firstly clarify the intention of the statement. Holon 04:06, 2 March 2006 (UTC)[reply]

Holon, this is the old wisdom: with respect to quantity, all entity names can be divided as the names of multitude (the continuous things) and the names of magnitude (the discrete things). The expression may need better and clear edition like as: With respect to quantity, all entity names can be divided as the names of multitude (the discrete things ) and the names of magnitude (continuous things). The former involves..., while the latter involves....

Azamat Abdoullaev 12:56, 2 March 2006 (UTC)[reply]

Points which need to be addressed

[edit]
  • Repeating point from above: A relation such as an angle (e.g. between two pieces of metal) is a fundamental kind of quantity. Reference to relations as quantites has been removed but this point has still not been addressed.

Just add it in proper place within the current context.

Azamat Abdoullaev 12:56, 2 March 2006 (UTC)

  • The word "few" has no definate numerical value. It is used for comparison (eg "Bob had fewer apples that Tom"). Suggest removing "few refers to three or four objects".

Cymro 3:25:42pm, 25th August 2006

  • Comments were made by Arthur Rubin above regarding the section quantity on mathematics and a question posed. I am planning to omit the whole section if no one can address the issues.

As for Arthur's comment regarding a line status: it must be clar the every line is a limited length, which belong to a fundamental quantity (as measure) along with mass, time period and temperature.

Concerning scalars, vectore and tensors, they are first of all variable quantities (variables assuming a set of values) that can be resolved into components; although other properties can be added up as well.

Azamat Abdoullaev 12:56, 2 March 2006 (UTC)

  • Related to previous point, Some quantities are such by their inner nature (as number) clearly implies that numbers are quantities. If this view has been put forward by someone, can it be cited?

Yes, it was clearly stated by Plotinus, and come as his achievement. This distinction very important; for there are things which are quantities in the primary sense, and there are things which are quantities in the secondary senses. Azamat Abdoullaev 12:56, 2 March 2006 (UTC)

Please cite. As it stands, the article reads as though this POV and distinction is prominent. See list of criteria below. Also 'primary sense' and 'secondary sense' need to be propertly explained. Holon 03:33, 3 March 2006 (UTC)[reply]

Otherwise, I plan to remove the statement on the basis that it is not suitable for an encyclopedia. Citations have been produced regarding continuous quantities and multitudes as quantities. In addition, all continuous quantities can be said to be such "by their inner nature": they possess quantitative structure by nature of their being. Consequently, saying numbers are quantities by their inner nature is doubly confusing.

Holon 09:50, 2 March 2006 (UTC)[reply]

I try follow one common rule fit for a good encylopedia, to put only well-verified knowledge.

Azamat Abdoullaev 12:56, 2 March 2006 (UTC)

Azamat, the problem is that it doesn't meet the verifiability criteria as things stand. Also, the weight given to a POV should be proportional to its prominence. I don't have much time at the moment but the weight given to the viewpoint that number is quantity is out of proportion currently given the way quantity was understood by Newton, Wallis, Euclid, and Holder, and as it is commonly understood in science. From POV:
  • If a viewpoint is in the majority, then it should be easy to substantiate it with reference to commonly accepted reference texts;
  • If a viewpoint is held by a significant minority, then it should be easy to name prominent adherents;
  • If a viewpoint is held by an extremely small (or vastly limited) minority, it doesn't belong in Wikipedia (except perhaps in some ancillary article) regardless of whether it's true or not; and regardless of whether you can prove it or not
If there is a prominent adherent, then it is reasonable to include a position, but it must not be conveyed as a prominent one unless it meets the criteria. Regards, Holon 03:14, 3 March 2006 (UTC)[reply]

In the study of quantity and its basic kinds as multitude (the discrete things as numbers) and magnitude (the continuous things as masses) , there are some established references to be guided:

Whitehead and Russell. Principa Mathematica, Parts III-IV; Whitehead. Introduction to Mathematics; Russell. Introduction into Mathematical Philosophy; Dedekind. Essays on the Theory of Numbers; Frege. The Foundations of Arithmetics; Nagel. On the Logic of Measurement; Peirce. Collected Papers; Tarski. Introduction to Logic

But i don't think we need to embarass the reader with all this. I am away of Wiki till the 7th of March. Azamat Abdoullaev 12:49, 3 March 2006 (UTC)

Multitude and magnitude are not what require citation. The reference to number as being quantity 'by its inner nature', quantity in 'primary sense' and 'secondary sense do. The list of references does not support any specific point in question. Holon 13:24, 3 March 2006 (UTC)[reply]

Much/muchly

[edit]

"One form of much, muchly is used to say that something is likely to happen." This doesn't make sense to me. If there is no objection it should be deleted. Zeyn1 (talk) 14:25, 19 May 2008 (UTC)[reply]

what is a syninam for quantity? —Preceding unsigned comment added by 69.243.190.12 (talk) 23:29, 22 September 2008 (UTC)[reply]


Requesting opinion on including or not the following change

[edit]

Initial version in the beginning of the article:


<< Quantity is a kind of property which exists as magnitude or multitude. It is among the basic classes of things along with quality, substance, change, and relation. >>


Proposed change:


<< Quantity is a kind of property which exists as magnitude or multitude. It involves equality, set, and order, and from this point of view, a quantity is an ordered set of equal objects; each individual object, belonging to the ordered set, can also be referred as "quantity" itself. It is among the basic classes of things along with quality, substance, change, and relation. >>


--Faustnh (talk) 19:11, 5 June 2009 (UTC)[reply]



Strong opposition. Most of the additional material seems to fit only the mathematical term (and only relating to discrete, as opposed to continuous, quantities, and a specific philosophical construct of those discrete quantities, at that). Although, as a mathematician, I would prefer to have mathematical terms used, it's not the common definition. — Arthur Rubin (talk) 19:58, 5 June 2009 (UTC)[reply]


The proposed change is not going to fly, for lots of reasons. The most important one is that it's original research. But even from a mathematical perspective, I'm very far from convinced that having a linear order is either necessary or sufficient for quantity-hood. --Trovatore (talk) 02:25, 6 June 2009 (UTC)[reply]


Just an annotation: I haven't spoken about linear order; although, after all, order linearity is, clearly, sufficient for quantity. Nothing to comment about everything else. --Faustnh (talk) 16:50, 6 June 2009 (UTC)[reply]



[edit]

Just for the record - the edit war over whether the word "property" should be a link or not started two days before the relevant XKCD comic came out, so I think that's just a coincidence.

Is everyone happy now with leaving the link in (as it was in versions prior to 23 May) or does it need to be discussed? Harryjohnston (talk) 03:28, 26 May 2011 (UTC)[reply]

I doubt it is coincidence. The idea that "philosophy is the center of Wikipedia" has been around longer than that... I saw it for the first time at a widely read site about a week before Munroe reported it in the alt text of xkcd. That earlier sighting had every appearance of being old news even then. I don't really care one way or the other, but I do see a risk of losing encyclopedic value when word order or linkage is being gamed like this. __ Just plain Bill (talk) 03:43, 26 May 2011 (UTC)[reply]
It is happening more places than just here, and though it is older, it has intensified with that comic. Looks in the xkcd forums response thread to that comic and you'll find several posts about pages it doesn't work on, and most of those were shortly afterward modified with added links. — Preceding unsigned comment added by 68.94.88.57 (talk) 06:57, 26 May 2011 (UTC)[reply]

Okay, I think we have new material for WP:LAME. Seriously, an edit war over a link solely to legitimize some meta-game? Morgan Wick (talk) 09:17, 26 May 2011 (UTC)[reply]

See WP:Get to Philosophy for some sketchy history of this. __ Just plain Bill (talk) 10:53, 26 May 2011 (UTC)[reply]
As per WP:OVERLINK, the idea of Property (philosophy) in the philosophical sense is not an everyday understanding, and important in the context of defining exactly what quantity is. As an entire aside to this game thing, it legitimately makes sense to have the link, and makes little sense to devote such ridiculous effort to removing the link. --SgtLion (talk) 21:31, 11 July 2018 (UTC)[reply]
Exactly, and other Wikipedia pages link to it in the same way -- Lastrik (talk) 10:22, 19 July 2018 (UTC)[reply]
The word property here is used in its everyday sense, there is no specialized philosophical meaning, and no need for a link. In any case creating links so that more articles will "get to philosophy" is an example of disruptive editing and could result in an editor being blocked. Paul August 11:47, 19 July 2018 (UTC)[reply]

Is Quantity Numerical?

[edit]

There is a disagreement as to whether a Quantity is necessarily numerical. From Hegel's definition of Quantity (http://papers.ssrn.com/sol3/papers.cfm?abstract_id=326822) it is clear that a quantity is numerical... In fact, this is it's defining feature. I feel that it is important to the definition because it is the main thing which distinguished a Quantity from a Quality. We may also want to add a section on the difference between quantity and quality. Jonhull (talk) 10:27, 9 June 2011 (UTC)[reply]

Hegel notwithstanding, quantity need not be numerical. I often determine which of two similar objects is heavier or more massive (or has a greater moment of inertia, in the case of stick-like objects) by hefting them in hand. When the difference is slight, I take one in each hand for the comparison, and then switch hands to remove a source of bias. Numbers have nothing to do with that method of evaluation nor with its accuracy, which suffices for practical purposes.
Naturally, I can assign numbers to some of these quantities, usually after walking over to the triple-beam balance or reaching for a measuring tape, but that only happens if I want to record something for future reference. In most cases, my determination of "more" or "less" has nothing to do with any numerical notion. __ Just plain Bill (talk) 12:48, 9 June 2011 (UTC)[reply]
Thought experiment: I have two piles of apples, one has 100 apples the other has 3. I can tell without counting that the 100 is much more than the 3 and that the 3 is much less than the 100, without having to actually count. Does me not bothering to count them make the piles numberless? No, they are numbered whether I know these number or just guestimate them. — Preceding unsigned comment added by 72.13.92.10 (talk) 17:52, 10 June 2011 (UTC)[reply]
That works, for countable items. Real experience: I hold two objects, and can tell without weighing which one is heavier. Assigning a number of arbitrary units to them, such as grams, or troy ounces, or Byzantine carats, does not alter any property of the objects themselves. If one weighs "more" than the other, it does so without regard to any numeric system which may be applied after the fact. __ Just plain Bill (talk) 18:20, 10 June 2011 (UTC)[reply]
Some quantities are countable -- but some are not. The uncountable ones CAN be assigned numbers by comparison with some chosen unit. A double pan balance will compare masses/weights without even giving a number. Just because we CAN assign a number does not mean numbers are essential to quantity. I have read 7 pages into that law professor's paper on Hegel. I see lots of talk about discrete v continuous quantification, and how quantities may be derived from qualities, and how numerical measures of quantity can be DERIVED - I do NOT see any DEFINITION of quantity in terms of numbers - not that a single paper by a law student would settle the matter anyway (nor would anything by Hegel himself). --JimWae (talk) 18:28, 10 June 2011 (UTC)[reply]

The real question is if "I have a few items" is a quantitative statement or a qualitative statement? Does that tell you the quantity of items? It would seem that quantitative is in reference to unit and qualitative is in reference to group association. Thus any quantity can then be given a unit of measure. It would also seem that quantity should be unambiguous (rigidly defined). Numbers are clearly unambiguous, but so are variables. For y =Ax + B each letter is a placeholder for any quantity and can be defined for all real numbers or all complex numbers or as needed. Quality on the other hand is ambiguous (loosely defined). Something is red is a qualitative statement. Red items are grouped because of their likeness (based on wavelengths of light), but the definition of what is and is not red is ambiguous making it a quality in which something can be more red or less red than another. So quantity is not numerical in the sense that a specific number needs to be identified, but is numerical in the sense that quantity is referenced to unit. We understand a quantity by how many units or parts of units it makes up. — Preceding unsigned comment added by 108.56.237.171 (talk) 01:10, 15 January 2016 (UTC)[reply]

Quantitative numbers

[edit]

Quantative numbers are comparative numbers for the determination of the relative quantity of things. In order to do that we have to create an organized and understood system of names of the sequential quantity values that can be calculated and communicated. To do that we first create a sequential line of something like an integer number line. and then we proceed to name the significant points along the sequence in some form of understood terminology. We then develop the convention of doing our measuring from a point zero at the left end to the right and reaching an undefined limit. We then develop a mental association of the units of some quantity that we wish to determine with a 1 to 1 basis of association until we run out of the units of the quantity to be measured, and we quote the value of that name as being the quantity of the measured units. Then, so long as we deal with unit quantities, we have a relative quantity determination system. However, for other than integer quantities we have developed a system for the determination of and naming of partial unit values (fractions) and for the use of the system of exponential notation and the logic of logarithmic notation in order to extend the scope of our quantitative measurement values over the widest possible range of quantative relationships. These complexities of naming and determination have resulted in a state of confusion of the public and even the scientific community with regard to the problems related to quantitative analysis.

Question about "two magnitudes of continuous quantity".

[edit]

Hello everyone. Question about "two magnitudes of continuous quantity", Isn't that a magnitude (already) a continuous quantity? if yes, why should someone say "two magnitudes of a continuous quantity", one can say just 'two magnitudes" as we already know they are continuous, or are there none continuous magnitudes? is yes, but then they are not magnitude anymore right? If someone want to refer to multitudes then he can't say discrete magnitudes, but he can say multitudes, because a magnitude is a continuous quantity.

Please your comments on this. — Preceding unsigned comment added by 82.173.205.132 (talk) 14:10, 23 February 2013 (UTC)[reply]

The term 'magnitude' is ambiguous. It can refer to a continuous determinable quantity (like mass or length), but it can also refer to the determinate values (like 2kg or 4.5m) of a determinable quantity (regardless of whether it's continuous). It's being used in the latter sense in the passage you quote. However, this ambiguity is not cleared up anywhere in the article, so your confusion is perfectly understandable. -ZP ZRPerry (talk) 18:02, 15 January 2014 (UTC)[reply]

Lead image

[edit]

In what system of iconography do three stripes signify quantity? Calling it a "multicultural sign" stretches credulity, to put it politely. Which cultures? Just plain Bill (talk) 00:08, 30 June 2017 (UTC)[reply]

Semi-protected edit request on 15 September 2018

[edit]

Link the word property to the page Property_(philosophy) to maintain the chain to phylosophy. 178.153.8.199 (talk) 12:25, 15 September 2018 (UTC)[reply]

 Not done: I'm not going to overlink the lead section of the article just so a silly game can continue. Provide a valid, content-based rationale, or leave it be. ‑‑ElHef (Meep?) 14:50, 16 September 2018 (UTC)[reply]
Indeed! Paul August 18:29, 16 September 2018 (UTC)[reply]

Semi-protected edit request on 25 November 2018

[edit]

Change "property" in the first line to "property" 2604:6000:8903:6100:E080:75D8:6417:368D (talk) 15:36, 25 November 2018 (UTC)[reply]

 Not done per MOS:LEADLINK. Even though there's a separate article about it, "property" is an ordinary word that doesn't really need to be linked to in order for a reader to understand how it's being used. –Deacon Vorbis (carbon • videos) 16:28, 25 November 2018 (UTC)[reply]
(I swear I didn't even see the nearly identical previous request and decline reason directly above this until after I answered!). –Deacon Vorbis (carbon • videos) 16:29, 25 November 2018 (UTC)[reply]

Semi-protected edit request on 2 June 2019

[edit]

Hyperlink for 'subject'; line one, third word. Olliegassor (talk) 15:20, 2 June 2019 (UTC)[reply]

Please clarify. The third word is an indefinite article; linking it to subject (which is a disambiguation page) makes no sense. Just plain Bill (talk) 16:18, 2 June 2019 (UTC)[reply]

Semi-protected edit request on 4 June 2021

[edit]

Add a link in the first word "property" to the wiki page of property:https://wiki.riteme.site/wiki/Property BMEP73 (talk) 17:31, 4 June 2021 (UTC)[reply]

 Done Ben ❯❯❯ Talk 17:41, 4 June 2021 (UTC)[reply]
and undone. That link is blatantly irrelevant to this article. The request carries the aroma of the "get to philosophy" shenanigans which are not a legitimate basis for adding or removing wikilinks. Just plain Bill (talk) 17:55, 4 June 2021 (UTC)[reply]
750 103.181.72.144 (talk) 22:25, 18 August 2024 (UTC)[reply]

110 37.111.207.126 (talk) 17:40, 6 October 2024 (UTC)[reply]