Talk:QED vacuum
This level-5 vital article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
‹See TfM›
|
This article links to one or more target anchors that no longer exist.
Please help fix the broken anchors. You can remove this template after fixing the problems. | Reporting errors |
Origins
[edit]The bulk of this article began as a contribution by myself to Citizendium: Vacuum (quantum electrodynamic). On WP the article QCD vacuum exists, and QED vacuum is at least as important a topic from the standpoint of the phenomena described under quantum electrodynamics. There are a number of aspects of QED vacuum scattered throughout WP, and an attempt has been made to link to them in a coherent fashion for a reader interested in QED vacuum itself. Brews ohare (talk) 16:03, 8 January 2012 (UTC)
Effects in strong magnetic fields
[edit]In strong fields, you get more spectacular effects, many of them are described in this article. E.g., the stability of the vacuum sets a limit on the maximum possible strength of a (static) magnetic field. If the magnetic field would become too strong, it will lead to monopoles being created, which will then weaken the magnetic field. Count Iblis (talk) 23:54, 13 January 2012 (UTC)
Virtual Particles - question
[edit]Any idea if ΔEΔt ≥ ½ħ would be better if we replaced ΔE with the General Relativistic conserved quantity (energy.mass.momentum.stress) and replaced Δt with Δ(x,y,z,t) ?? (time dependent AND relativistic) My understanding is that ΔEΔt ≥ ½ħ is not directly applicable to vacuum fluctuations, so its invocation in that context is incorrect, rather than just debatable?72.172.11.140 (talk) 00:03, 3 February 2014 (UTC)
A compact and comprehensive article!
[edit]I'm not an expert on the subject, but as an interested layman I think the article links a couple of QFT-ideas in a very nice way. My thanks to the writer. P.S. I know this is a subjective opinion. — Preceding unsigned comment added by Koitus~nlwiki (talk • contribs) 20:24, 5 March 2020 (UTC)
Energy Time Relation
[edit]Whoever wrote that time amd energy do not satisfy commutation relations has no business editing physics topics. Energy and time are more fundamental in HUP than say position and momentum. A simple thought would.conclude that [H,t] = i ĥ, and that's the end of that discussion. 2kQbitz (talk) 19:54, 25 January 2023 (UTC)