This article is within the scope of WikiProject Economics , a collaborative effort to improve the coverage of Economics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.Economics Wikipedia:WikiProject Economics Template:WikiProject Economics Economics Mid This article has been rated as Mid-importance on the project's importance scale .
This article is within the scope of WikiProject Engineering , a collaborative effort to improve the coverage of engineering on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.Engineering Wikipedia:WikiProject Engineering Template:WikiProject Engineering Engineering ??? This article has not yet received a rating on the project's importance scale .
The derivation of the Cost based optimization of inventory level formula:
K
(
q
)
=
c
f
+
c
v
q
+
p
E
[
max
{
D
−
q
,
0
}
]
+
h
E
[
max
{
q
−
D
,
0
}
]
{\displaystyle K\left(q\right)={{c}_{f}}+{{c}_{v}}q+pE\left[\max \left\{D-q,0\right\}\right]+hE\left[\max \left\{q-D,0\right\}\right]}
note that
max
{
D
−
q
,
0
}
{\displaystyle \max \left\{D-q,0\right\}}
is the same as
D
−
min
{
D
,
q
}
{\displaystyle D-\min \left\{D,q\right\}}
and
max
{
q
−
D
,
0
}
{\displaystyle \max \left\{q-D,0\right\}}
is the same as
q
−
min
{
D
,
q
}
{\displaystyle q-\min \left\{D,q\right\}}
so we can reuse the
min
{
D
,
q
}
{\displaystyle \min \left\{D,q\right\}}
from the main article and do the following transforms:
K
(
q
)
=
c
f
+
c
v
q
+
p
E
[
max
{
D
−
q
,
0
}
]
+
h
E
[
max
{
q
−
D
,
0
}
]
=
=
c
f
+
c
v
q
+
p
E
[
D
−
min
{
q
,
D
}
]
+
h
E
[
q
−
min
{
q
,
D
}
]
=
=
c
f
+
c
v
q
+
p
E
[
D
]
−
p
E
[
min
{
q
,
D
}
]
+
h
q
−
h
E
[
min
{
q
,
D
}
]
=
=
c
f
+
(
c
v
+
h
)
q
+
p
E
[
D
]
−
(
p
+
h
)
E
[
min
{
q
,
D
}
]
=
=
c
f
+
(
c
v
+
h
)
q
+
p
E
[
D
]
−
(
p
+
h
)
(
∫
x
≤
q
x
f
(
x
)
d
x
+
q
[
1
−
F
(
q
)
]
)
{\displaystyle {\begin{aligned}K\left(q\right)&={{c}_{f}}+{{c}_{v}}q+pE\left[\max \left\{D-q,0\right\}\right]+hE\left[\max \left\{q-D,0\right\}\right]=\\&={{c}_{f}}+{{c}_{v}}q+pE\left[D-\min \left\{q,D\right\}\right]+hE\left[q-\min \left\{q,D\right\}\right]=\\&={{c}_{f}}+{{c}_{v}}q+pE\left[D\right]-pE\left[\min \left\{q,D\right\}\right]+hq-hE\left[\min \left\{q,D\right\}\right]=\\&={{c}_{f}}+\left({{c}_{v}}+h\right)q+pE\left[D\right]-\left(p+h\right)E\left[\min \left\{q,D\right\}\right]=\\&={{c}_{f}}+\left({{c}_{v}}+h\right)q+pE\left[D\right]-\left(p+h\right)\left(\int \limits _{x\leq q}{xf\left(x\right)dx}+q\left[1-F\left(q\right)\right]\right)\end{aligned}}}
and take its partial derivative with respect to
q
{\displaystyle q}
:
∂
∂
q
K
(
q
)
=
(
c
v
+
h
)
−
(
p
+
h
)
(
q
f
(
q
)
+
1
−
F
(
q
)
−
q
f
(
q
)
)
=
=
(
c
v
+
h
)
−
(
p
+
h
)
(
1
−
F
(
q
)
)
{\displaystyle {\begin{aligned}{\frac {\partial }{\partial q}}K\left(q\right)&=\left({{c}_{v}}+h\right)-\left(p+h\right)\left(qf\left(q\right)+1-F\left(q\right)-qf\left(q\right)\right)=\\&=\left({{c}_{v}}+h\right)-\left(p+h\right)\left(1-F\left(q\right)\right)\end{aligned}}}
for the optimal solution
q
∗
{\displaystyle q^{*}}
the above should be equal to zero:
0
=
(
c
v
+
h
)
−
(
p
+
h
)
(
1
−
F
(
q
∗
)
)
F
(
q
∗
)
=
1
−
c
v
+
h
p
+
h
q
∗
=
F
−
1
(
1
−
c
v
+
h
p
+
h
)
=
F
−
1
(
p
−
c
v
p
+
h
)
{\displaystyle {\begin{aligned}0&=\left({{c}_{v}}+h\right)-\left(p+h\right)\left(1-F\left({{q}^{*}}\right)\right)\\F\left({{q}^{*}}\right)&=1-{\frac {{{c}_{v}}+h}{p+h}}\\{{q}^{*}}&={{F}^{-1}}\left(1-{\frac {{{c}_{v}}+h}{p+h}}\right)={{F}^{-1}}\left({\frac {p-{{c}_{v}}}{p+h}}\right)\end{aligned}}}
Val.khokhlov (talk ) 13:49, 19 December 2024 (UTC) [ reply ]