Jump to content

Talk:Gibbs–Thomson equation

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

The original article was strictly the Ostwald–Freundlich equation. This change has been proposed for some months, and no comments received. Dr.BeauWebber (talk) 10:15, 29 May 2011 (UTC)[reply]

First to derive the Gibbs-Thomson equation

[edit]

One source (Ha, 2006) claimed that the Czech Paul Kubelka first derived the Gibbs-Thomson equation in 1932.[1] However, after finally obtaining a copy of Kubelka's 1932 paper, (1) his equation differs slightly from the Gibbs-Thomson equation because his equation uses the energy of the surface between the gas and solid phases, whereas the Gibbs-Thomson equation uses the energy of the surface between the liquid and solid phases; and (2) Kubelka cites other authors as having derived the Gibbs-Thomson equation. Specifically, according to Kubelka, the following investigators first and independently derived the Gibbs-Thomson equation:

  • Ernst Rie (1920) Dissertation, University of Vienna, which was reprinted in: Ernst Rie (1923) "Über die Einfluss der Oberflächenspannung auf Schmelzen und Gefrieren" (On the influence of surface tension on melting and freezing), Zeitschrift für physikalische Chemie, 104 : 354-362 ; see p. 354 for the equation. (Note: Austrian physicist Ernst Rie (1896-1921) died while hiking on a glacier, so the article in Zeitschrift für physikalische Chemie was published posthumously.)
  • Fritz Haber (1922) "Über amorphe Niederschläge und kristallisierte Sole" (On amorphous precipitates and crystallized brine), Berichte der Deutschen chemischen Gesellschaft, 55 : 1717-1733; see p. 1722 for the equation.

Haber does not derive the Gibbs-Thomson equation, he merely states it. In a footnote on page 1721, he cites his sources: (Pavlov, 1909), (Tammann, 1920), (Meißner, 1920) and (Born and Stern, 1919), where the latter reference is:

However, Born and Stern don't present any version of the Gibbs-Thomson equation.

[1] Kubelka, Paul (July 1932) "Über den Schmelzpunkt in sehr engen Capillaren" (On the melting point in very narrow capillaries), Zeitschrift für Elektrochemie und angewandte physikalische Chemie (Journal for Electrochemistry and Applied Physical Chemistry), 38 (8a) : 611-614. Available on-line in English translation at: National Research Council Canada

Cwkmail (talk) 12:57, 3 November 2013 (UTC)[reply]


Other scientists who investigated melting point depression during the late 19th and early 20th century:

  • Михаил Юльевич Гольдштейн [Mikhail Yulevich Goldstein] (1853—1905): Goldstein, M. Yu. (1892) "---," Журнал Русского Физико-Химического общества [Journal of the Russian Physical Chemistry Society], 24 : 641-642.
  • Cornelio Doelter (1911) "Allgemeines über Gleichgewichte in Silikatschmelzen" [General remarks on equilibria in silicate melts], Zeitschrift für Elektrochemie, 17 : 795-800.
  • Cornelio Doelter (1911) "Über Gleichgewichte in Silikatschmelzen und über die Bestimmung des Schmelzpunktes des Calciummetasilikates" (On equilibrium in silicate melts and on the determination of the melting point of calcium metasilikates), Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften (Proceedings of the Mathematical-scientific Section of the Imperial Academy of Philosophy [in Vienna, Austria]), 120 : 839-864. Available on-line at: State Museum of Austria.
  • H. Leitmeier (June 10, 1913) "Zur Kenntnis der Schmelzpunkte von Silikaten. Der Einfluß der Korngröße auf den Schmelzpunkt. Bestimmung des Schmelzpunktes einiger Silikate durch längeres Erhitzen" [(Contribution) to (our) knowledge of the melting point of silicates. The influence of particle size on the melting point. Determination of the melting point of some silicates by prolonged heating] Zeitschrift für anorganische und allgemeine Chemie, 81 (1) : 209-232.

Cwkmail (talk) 19:05, 21 February 2014 (UTC) VexorAbVikipædia (talk) 03:24, 27 April 2016 (UTC)[reply]