Talk:Centralizer and normalizer/Archive 1
This is an archive of past discussions about Centralizer and normalizer. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 1 |
The statement:
- The normalizer gets its name from the fact that if we let <S> be the subgroup generated by S, then N(S) is the largest subgroup of G having <S> as a normal subgroup.
is incorrect.
Let H = < s | s3 = 1 > the cyclic group of order 3.
Let G = <s, t | s3 = 1 , t-1st =s2 > an HNN extention of H which embedds H in the obvious way.
Let S = {s}. Then t-1st is not in S so t is not in NS(G). However it is contained in NH(G), which (since H=<S>) is the largest subgroup of G having <S> as a normal subgroup. Bernard Hurley 21:50, 6 October 2006 (UTC)
Typos
I don't want to make the edit myself, in case I am mistaken, but in the first sentance:
In group theory, the centralizer and normalizer of a subset S of a group G are subgroups of G which have a restricted action on the elements of S and S as a whole, respectively. These subgroups provide insight into the structure of G.
Shouldn't it infact read:
In group theory, the centralizer and normalizer of a subset S of a group G are subgroups of G which have a restricted action on the elements of S and G as a whole, respectively. These subgroups provide insight into the structure of G.
James.robinson (talk) 07:46, 1 January 2009 (UTC)
- No, the first one is correct. The "on the elements of S" refers to the centraliser, and "S as a whole" is the normaliser - check the defs for clarification SetaLyas (talk) 22:48, 18 March 2009 (UTC)
Lie algebras
There are analogous, but nonidentical, notions of centralizer and normalizer in Lie algebras. 99.231.65.91 (talk) 21:23, 24 January 2009 (UTC)
disambig "centralizer"
A centralizer is also a tool, e.g. in oil drilling.[1] —Preceding unsigned comment added by 92.78.99.50 (talk) 21:24, 27 November 2010 (UTC)
Reference/sources
There is a reference at the end of the article, so it seems to me that the frightener at the beginning declaring that there are none needs to be removed. --Brian Josephson (talk) 21:25, 22 December 2011 (UTC)
Normalizer is NOT always a subgroup of G
See http://www.markrobrien.com/hw3sol.pdf - a clear counterexample that refutes the claim made in the article (which is stated without evidence). The article should be revised in light of this. 174.2.168.156 (talk) 01:09, 18 October 2013 (UTC)
- The definition used in that PDF is non-standard (though equivalent to the standard one in the case of finite groups). With the standard definition (as used in the article), the normalizer is always a subgroup. --Zundark (talk) 14:58, 18 October 2013 (UTC)
- (edit conflict) Hi: the proof given at the link is not a disproof because it uses a nonstandard definition of normalizer. The definition used there is , whereas it should actually be (as it is in the article and in most texts) . As you can see, for the given a and H in that paper, , so it is not in the (standard) normalizer. Rschwieb (talk) 15:21, 18 October 2013 (UTC)
Commutant
This is the same thing despite that article's claim to the contrary. There are plenty of sources defining centralizer for semigroups [2][3]. JMP EAX (talk) 07:08, 24 August 2014 (UTC)
- Merge Done given the lack of opposition after a week. JMP EAX (talk) 10:01, 3 September 2014 (UTC)
semigroups
This has a lot of interesting material. JMP EAX (talk) 09:26, 24 August 2014 (UTC)
And so does this. JMP EAX (talk) 09:30, 24 August 2014 (UTC)