Talk:Β-Hydroxy β-methylbutyric acid/Archive 2
This is an archive of past discussions about Β-Hydroxy β-methylbutyric acid. Do not edit the contents of this page. If you wish to start a new discussion or revive an old one, please do so on the current talk page. |
Archive 1 | Archive 2 |
In the body
Follow-up from FAC
The content in this tab has been moved again; it's now located at Wikipedia:Featured article candidates/Beta-Hydroxy beta-methylbutyric acid/archive3#Comments by Doc James.
Please continue this discussion there. | ||
---|---|---|
The review you are using comes to three sentences of conclusions "HMB contributed to preservation of muscle mass in older adults." which says it help keep mm mass, does not comment on those with sarcopenea. "HMB supplementation may be useful in the prevention of muscle atrophy induced by bed rest or other factors." A decrease of uncertainty "Further studies are needed to determine the precise effects of HMB on muscle strength and physical function in older adults." Means it is unclear if HMB affects str or function. Doc James (talk · contribs · email) 03:04, 17 December 2016 (UTC)
@Doc James: What is your concern with that sentence, specifically, if the population samples included in the RCTs from that meta-analysis (link here) wasn't the issue? Seppi333 (Insert 2¢) 00:00, 20 December 2016 (UTC)
|
New reviews
Checked for updates on November 9th, 2017 (my birthday, yay). Seppi333 (Insert 2¢) 05:33, 9 November 2017 (UTC)
- Happy Birthday :-) Doc James (talk · contribs · email) 05:37, 9 November 2017 (UTC)
- Thanks! Seppi333 (Insert 2¢) 06:12, 9 November 2017 (UTC)
- Happy Birthday :-) Doc James (talk · contribs · email) 05:37, 9 November 2017 (UTC)
1st
Added (partially) - more potential material to go through and add if deemed encyclopedic; see collapse tab below
- @Jytdog, Boghog, and Doc James: I just did a literature search and found one new review: PMID 28493406;[1] it was published online on May 10, 2017. Also, I contacted the corresponding author of this prospective systematic review a few weeks ago; he told me that it has been submitted to an academic journal and is currently being peer-reviewed, so I suspect that it will be published within the next 1–3 months. Once it's published, I intend to add a summary of its findings on the effects/efficacy of HMB in healthy individuals.
As for this[1] review, I intend to use it to cite existing statements and possibly add new material which is relevant to clinical uses (e.g., HMB supplementation in elderly/sarcopenic individuals). These are the sections from the review that are relevant to its clinical uses:
Excerpts of the sections on Elderly populations, Toxicity + adverse effects, and Conclusions
| ||
---|---|---|
Also, check for new pharmacology content to add from these sections of the review:
|
Most of the quoted material above is already covered to some extent in the article at the moment, but the commentary from this review isn't reflected in the current article text. Should new content be added, or should this reference just be appended to existing text that it supports? Do any of you have any proposed revisions to the article in mind? @Doc James: I'm directing that last question mainly at you since you took issue with how some of the medical statements were worded during the most recent FAC nomination. Seppi333 (Insert 2¢) 04:27, 3 June 2017 (UTC)
2nd
- "A systematic review on β-hydroxy-β-methylbutyrate free acid supplementation suggests improvements in measures of muscle recovery, performance, and hypertrophy following resistance training."[2]
@Boghog, Jytdog, and Doc James: The "#Upcoming systematic review" was finally published in an academic journal in September.[2] Boghog, do you think we should renominate the article for FA or continue with GAN once I add coverage of this review and the other reviews listed below to the article? Seppi333 (Insert 2¢) 04:48, 9 November 2017 (UTC)
- FYI: I'm waiting to get ref #5 below (PMID 28554316) from WP:RX before I update the article with the content from all of the reviews cited in this section (i.e., the ones in #Section reflist). Seppi333 (Insert 2¢) 01:13, 19 November 2017 (UTC)
3rd–8th
- Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls – October 2017 review.[3]
The Potential of β-Hydroxy-β-Methylbutyrate as a New Strategy for the Management of Sarcopenia and Sarcopenic Obesity – October 2017 review.[4] Added
Beta-hydroxy-beta-methyl butyrate (HMB): From experimental data to clinical evidence in sarcopenia – May 2017 review[5]
What factors influence protein synthesis and degradation in critical illness? – March 2017 review.[6]
Seppi333 (Insert 2¢) 05:19, 9 November 2017 (UTC) – Updated 06:12, 9 November 2017 (UTC)
- Yes this ref says "Clinical trials performed in older adults confirm that HMB can attenuate the progression of sarcopenia in elderly subjects." So basically it may slow muscle loss.[6]
- This review is a little more cautious concluding "However, heterogeneous methodological approaches preclude solid conclusions, and more studies are needed to confirm the role of HMB as a promising agent to treat sarcopenia."[7]
- So definitely promising and appears safe but not yet definite. Doc James (talk · contribs · email) 05:44, 9 November 2017 (UTC)
- @Doc James: I had to contact Dr. Alfonso Cruz-Jentoft via email to obtain his review article (i.e., the one that you mentioned was a little more cautious in your reply immediately above) since no one at WP:RX had access to the journal in which he published his review. You can read his review and its conclusions here. Seppi333 (Insert 2¢) 18:22, 17 December 2017 (UTC)
- HMB increases myofibrillar protein synthesis by upregulation via the mTOR pathway. - HMB modulates protein degradation by inhibiting the ubiquitin-proteasome proteolytic pathway in muscle cells. Ubiquitin is induced by immobilization and by catabolic conditions, inducing proteasome expression through the activation of nuclear factor kappa B (NK-κB), thus promoting muscle wasting. HMB may inhibit the activity of NK-κB, attenuating muscle loss in wasting conditions. - The integrity of cell membranes depends on cholesterol synthesis from acetyl-CoA. HMB is converted to ß-hydroxyß- methylglutaryl-coenzyme A (HMG-CoA), which is turned into cholesterol by the HMG-coenzyme A reductase, the rate-limiting enzyme to cholesterol synthesis. Thus, HMB supplementation may stabilize cell membranes. HMB itself seems to be a component of cell membranes. - HMB may prevent cell apoptosis and enhance muscle satellite cell survival. - HMB increases proliferation and differentiation of muscle stem cells, via the MAPK/ERK and PI3K/Akt pathways. - HMB up-regulates transcription and expression of the IGF-I gene in skeletal muscle and liver. IGF exerts an anabolic action and causes hypertrophy of skeletal muscle fibers. |
Pharmacodynamics and pharmacokinetics of HMB-CA in humans in vivo
- This is a primary source which examines the same pharmacodynamic and pharmacokinetic parameters for HMB-CA as the ones that were examined in the study on HMB-FA and leucine which is currently cited in the article – October 2017 primary study.[9] Seppi333 (Insert 2¢) 06:12, 9 November 2017 (UTC)
Already cited in the article (this is the study on HMB-FA and leucine that was mentioned immediately above).[10]
Section reflist
References
- ^ a b c d e Holeček M (May 2017). "Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions". Journal of Cachexia, Sarcopenia and Muscle. 8 (4): 529–541. doi:10.1002/jcsm.12208. PMC 5566641. PMID 28493406.
- ^ a b Silva VR, Belozo FL, Micheletti TO, Conrado M, Stout JR, Pimentel GD, Gonzalez AM (September 2017). "β-hydroxy-β-methylbutyrate free acid supplementation may improve recovery and muscle adaptations after resistance training: a systematic review". Nutrition Research. 45: 1–9. doi:10.1016/j.nutres.2017.07.008. hdl:11449/170023. PMID 29037326.
HMB's mechanisms of action are generally considered to relate to its effect on both muscle protein synthesis and muscle protein breakdown (Figure 1) [2, 3]. HMB appears to stimulate muscle protein synthesis through an up-regulation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a signaling cascade involved in coordination of translation initiation of muscle protein synthesis [2, 4]. Additionally, HMB may have antagonistic effects on the ubiquitin–proteasome pathway, a system that degrades intracellular proteins [5, 6]. Evidence also suggests that HMB promotes myogenic proliferation, differentiation, and cell fusion [7]. ... Exogenous HMB-FA administration has shown to increase intramuscular anabolic signaling, stimulate muscle protein synthesis, and attenuate muscle protein breakdown in humans [2].
- ^ Weihrauch M, Handschin C (October 2017). "Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls". Biochemical Pharmacology. 147: 211–220. doi:10.1016/j.bcp.2017.10.006. PMC 5850978. PMID 29061342.
- ^ Rossi AP, D'Introno A, Rubele S, Caliari C, Gattazzo S, Zoico E, Mazzali G, Fantin F, Zamboni M (October 2017). "The Potential of β-Hydroxy-β-Methylbutyrate as a New Strategy for the Management of Sarcopenia and Sarcopenic Obesity". Drugs & Aging. 34 (11): 833–840. doi:10.1007/s40266-017-0496-0. PMID 29086232. S2CID 4284897.
Clinical trials performed in older adults confirm that HMB can attenuate the progression of sarcopenia in elderly subjects. HMB supplementation results in an increase in skeletal muscle mass and strength in the elderly and its effect is even greater when combined with physical exercise.
- ^ Cruz-Jentoft AJ (May 2017). "Beta-hydroxy-beta-methyl butyrate (HMB): From experimental data to clinical evidence in sarcopenia". Current Protein & Peptide Science. 18 (7): 668–672. doi:10.2174/1389203718666170529105026. PMID 28554316.
HMB is widely used as an ergogenic supplement by young athletes.
- ^ Di Girolamo FG, Situlin R, Biolo G (March 2017). "What factors influence protein synthesis and degradation in critical illness?". Current Opinion in Clinical Nutrition and Metabolic Care. 20 (2): 124–130. doi:10.1097/MCO.0000000000000347. PMID 28002075. S2CID 3480306.
- ^ omitted - not planning to use this review
- ^ Borack MS, Volpi E (December 2016). "Efficacy and Safety of Leucine Supplementation in the Elderly". The Journal of Nutrition. 146 (12): 2625S – 2629S. doi:10.3945/jn.116.230771. PMC 5118760. PMID 27934654.
No serious side effects have been reported with leucine, EAA, or HMB supplementation; and the health risks associated with these supplements are few and predictable.
- ^ Wilkinson DJ, Hossain T, Limb MC, Phillips BE, Lund J, Williams JP, Brook MS, Cegielski J, Philp A, Ashcroft S, Rathmacher JA, Szewczyk NJ, Smith K, Atherton PJ (October 2017). "Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism". Clinical Nutrition (Edinburgh, Scotland). 37 (6): 2068–2075. doi:10.1016/j.clnu.2017.09.024. PMC 6295980. PMID 29097038.
Ca-HMB led a significant and rapid (<60 min) peak in plasma HMB concentrations (483.6 ± 14.2 μM, p < 0.0001). This rise in plasma HMB was accompanied by increases in MPS (PA: 0.046 ± 0.004%/h, CaHMB: 0.072 ± 0.004%/h, p < [0.001]) and suppressions in MPB (PA: 7.6 ± 1.2 μmol Phe per leg min-1, Ca-HMB: 5.2 ± 0.8 μmol Phe per leg min-1, p < 0.01). ... During the first 2.5 h period we gathered postabsorptive/fasted measurements, the volunteers then consumed 3.42 g of Ca-HMB (equivalent to 2.74 g of FA-HMB) ... It may seem difficult for one to reconcile that acute provision of CaHMB, in the absence of exogenous nutrition (i.e. EAA's) and following an overnight fast, is still able to elicit a robust, perhaps near maximal stimulation of MPS, i.e. raising the question as to where the additional AA's substrates required for supporting this MPS response are coming from. It would appear that the AA's to support this response are derived from endogenous intracellular/plasma pools and/or protein breakdown (which will increase in fasted periods). ... To conclude, a large single oral dose (~3 g) of Ca-HMB robustly (near maximally) stimulates skeletal muscle anabolism, in the absence of additional nutrient intake; the anabolic effects of Ca-HMB are equivalent to FA-HMB, despite purported differences in bioavailability (Fig. 4).
- ^ Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ (June 2013). "Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism" (PDF). The Journal of Physiology. 591 (11): 2911–2923. doi:10.1113/jphysiol.2013.253203. PMC 3690694. PMID 23551944.
The stimulation of MPS through mTORc1-signalling following HMB exposure is in agreement with pre-clinical studies (Eley et al. 2008). ... Furthermore, there was clear divergence in the amplitude of phosphorylation for 4EBP1 (at Thr37/46 and Ser65/Thr70) and p70S6K (Thr389) in response to both Leu and HMB, with the latter showing more pronounced and sustained phosphorylation. ... Nonetheless, as the overall MPS response was similar, this cellular signalling distinction did not translate into statistically distinguishable anabolic effects in our primary outcome measure of MPS. ... Interestingly, although orally supplied HMB produced no increase in plasma insulin, it caused a depression in MPB (−57%). Normally, postprandial decreases in MPB (of ~50%) are attributed to the nitrogen-sparing effects of insulin since clamping insulin at post-absorptive concentrations (5 μU ml−1) while continuously infusing AAs (18 g h−1) did not suppress MPB (Greenhaff et al. 2008), which is why we chose not to measure MPB in the Leu group, due to an anticipated hyperinsulinaemia (Fig. 3C). Thus, HMB reduces MPB in a fashion similar to, but independent of, insulin. These findings are in-line with reports of the anti-catabolic effects of HMB suppressing MPB in pre-clinical models, via attenuating proteasomal-mediated proteolysis in response to LPS (Eley et al. 2008).
Small additional concerns
Some small additional concerns. I don't think these are enough to prevent a successful GA nomination, and they have been discussed with Seppi333 during the nomination and we have reached a loggerheads. I note these with a view to a (1) FA nomination and (2) MEDRS compliance:
- I still think some work could be done paring down references
- I think information relating to the lack of effects of overdose should be included in text
- I am concerned that primary sources are used to make medical claims, which is not something recommended by our WP:MEDRS
- "One clinical trial with Juven for AIDS also demonstrated improvements in immune status, as measured by a reduced HIV viral load relative to controls and higher CD3+ and CD8+ cell counts"
- "The efficacy of Juven for the treatment of cancer cachexia was also examined in a phase 3 clinical trial which found a strong trend (i.e., p=.08) for an improvement in lean body mass relative to controls"
- I do not think that the article needs so many notes (I think most could be removed without damaging the article's integrity)
It would be useful if a third editor could comment on these; Seppi333 makes some good points and it may be useful if a third or fourth editor could offer their opinion on the above. Have a lovely festive season, --Tom (LT) (talk) 22:53, 25 December 2017 (UTC)
- @Tom (LT): Re: "The efficacy of Juven for the treatment of cancer cachexia was also examined in a phase 3 clinical trial which found a strong trend (i.e., p=.08) for an improvement in lean body mass relative to controls"
- Given that this is a primary study showing a non-statistically significant trend, and the cited systematic review essentially says it's useless, this should probably be removed. PriceDL (talk) 00:11, 26 December 2017 (UTC)
- Generally speaking, I am never been in favor of removing references because there are too many and need to be pared down. Sure, some refs may not be MEDRS and removed, but medical topics need to be rich with references and if ten superscripted numerals aren't appropriate in the 'reader's' of the article, retain the references in the wiki-markup view. These references can then be 'reactivated' as other references become outdated. Perhaps I am sensitive to the referencing issues brought up, but there is no need to remove them just because there are too many. Best Regards, Barbara (WVS) ✐ ✉ 15:02, 2 March 2018 (UTC)
Conjugate base
There appears to be disagreement on whether Beta-Hydroxy beta-methylbutyrate should be described like an alternate name of Beta-Hydroxy beta-methylbutyric acid in the lead. While the two are closely related (They're each other's conjugate acid/base.), I think that the article needs to recognize that they're not exactly the same molecule. Care to differ or discuss with me? The Nth User 02:10, 1 June 2018 (UTC)
- The current version is fine with me. Seppi333 (Insert 2¢) 21:18, 1 June 2018 (UTC)
- I still think that saying that the two conjugates are the same as each other is a simple factual error. Besides prominence of the subject, the case would be exactly the same if Wikipedia said that water was the same as hydronium or hydroxide. Care to differ or discuss with me? The Nth User 02:57, 2 June 2018 (UTC)
- @The Nth User: I completely understand what you're saying. Strictly from a chemistry viewpoint, the two compounds are different in many ways. From a pharmacological/molecular biological, medical, and even biochemical viewpoint though, the two are entirely interchangeable since their pharmacological/cellular properties/effects (e.g., the signaling cascades that they trigger in humans, the resulting effects on muscle protein synthesis/breakdown in humans in vivo, and their presumed biomolecular targets), clinical properties/effects (e.g., effects on lean body mass, recovery time, muscle strength/power, etc. in humans in vivo), and metabolic properties/effects (i.e., biosynthesis and metabolism, due to the fact that these compounds are readily converted to one another in the body, dependent upon the pH of the biofluid compartment where they're distributed) are equivalent; in other words, for the purpose of describing each of those aspects, the acid and base are interchangeable and simultaneous reference to both via the abbreviation "HMB" is desirable/merited.
- I've done my best to balance the fact that they're not equivalent from a chemical viewpoint but are from most other viewpoints by including coverage of both chemical structure diagrams in the drugbox (i.e., the two are very prominently displayed in the drugbox, which makes it abundantly clear that there's a structural difference between them in one of the acid's two hydroxyl groups and a difference in their molecular formulas). I also stopped using the catch-all abbreviation "HMB" in the Beta-Hydroxy beta-methylbutyric acid#Chemistry section and instead used the expanded names of the conjugate acid and base to differentially cover their chemical properties. That's literally the only section of the article where doing this was actually necessary because the vast majority of assertions elsewhere in the article apply simultaneously to both the acid and the base. If you have a better idea about how to go about doing this, let me know. I'm open to modifying the coverage of the distinction in the lead provided that it doesn't create ambiguity about the equivalence of the pharmacological, medical, and biochemical properties. Seppi333 (Insert 2¢) 01:44, 10 June 2018 (UTC)
- Actually, what I said above wasn't completely accurate; differential coverage of HMB-Ca and HMB-FA was necessary in a few sections of the article since the calcium moiety in HMB-Ca modifies the pharmacokinetic properties (i.e., uptake/distribution) and slightly modifies the magnitude of the clinical and cellular/pharmacodynamic effects of the compound relative to HMB-FA (i.e., pure β-hydroxy β-methylbutyric acid). Even so, there are many statements in the article that cover aspects of those topics where differential coverage of HMB-Ca and HMB-FA was/is not necessary. Seppi333 (Insert 2¢) 01:48, 10 June 2018 (UTC)
- @Seppi333: The article now is fine. I just wanted a clarification that they were two separate chemicals at the top. But if anything good came out of this, I got the idea for conjugate acid and base parameters to be added to Template:Chembox. Care to differ or discuss with me? The Nth User 18:43, 16 June 2018 (UTC)
- I still think that saying that the two conjugates are the same as each other is a simple factual error. Besides prominence of the subject, the case would be exactly the same if Wikipedia said that water was the same as hydronium or hydroxide. Care to differ or discuss with me? The Nth User 02:57, 2 June 2018 (UTC)
Citing a new chemistry claim
β-Hydroxy β-methylbutyric acid is a member of the carboxylic acid family of organic compounds and like them, it is a weak acid.
@EdChem: Would you happen to know of a source that can be used to cite this statement? Seppi333 (Insert 2¢) 09:56, 17 April 2018 (UTC)
- Is a citation needed? The diagram of the molecule in the infobox shows a carboxyl group. Care to differ or discuss with me? The Nth User 02:12, 1 June 2018 (UTC)
- The only claim in that sentence that really needs a citation is the assertion that carboxylic acids are weak acids. "β-Hydroxy β-methylbutyric acid is a monocarboxylic β-hydroxy acid" is cited in the previous paragraph. Seppi333 (Insert 2¢) 21:18, 1 June 2018 (UTC)
- The weak acid article supports the general pattern that carboxylic acids are weak, and the enumeration of the strong acid general types and specific examples does not include any. But surprisingly, neither acid strength (target of the weak acid redirect) nor carboxylic acid actually directly cite this specific pattern of this functional group! So "like them" is still not strictly WP:V. DMacks (talk) 05:07, 7 June 2018 (UTC)
- @DMacks: So, do you think this statement should be rephrased to something along the lines of the following sentence?
- "
β-Hydroxy β-methylbutyric acid is a weak acid and a member of the carboxylic acid family of organic compounds.
"
- "
- If it's rephrased in that manner, the only thing that needs to be cited is the assertion that HMB is a weak acid. I might be able to find a citation for that assertion own my own. Seppi333 (Insert 2¢) 01:22, 10 June 2018 (UTC)
- "Weak acid" is a mechanical definition based on the pKa. The pKa value is given and cited in the previous section. So maybe the "weak acid" detail should be moved to there rather than where it is now if we are stating a bare fact rather than making a "chemical structure" explanation? So in the second-level "Chemistry" section:
- and then later in the "Chemical structure" section:
β-hydroxy β-methylbutyric acid is a member of the carboxylic acid family of organic compounds. It is a structural analog...
- DMacks (talk) 02:39, 10 June 2018 (UTC)
- That sounds reasonable. I'll make the change. Seppi333 (Insert 2¢) 19:41, 11 June 2018 (UTC)
- @DMacks: So, do you think this statement should be rephrased to something along the lines of the following sentence?
- The weak acid article supports the general pattern that carboxylic acids are weak, and the enumeration of the strong acid general types and specific examples does not include any. But surprisingly, neither acid strength (target of the weak acid redirect) nor carboxylic acid actually directly cite this specific pattern of this functional group! So "like them" is still not strictly WP:V. DMacks (talk) 05:07, 7 June 2018 (UTC)
- The only claim in that sentence that really needs a citation is the assertion that carboxylic acids are weak acids. "β-Hydroxy β-methylbutyric acid is a monocarboxylic β-hydroxy acid" is cited in the previous paragraph. Seppi333 (Insert 2¢) 21:18, 1 June 2018 (UTC)
@Seppi333: I don't really think any citation was needed as the fact that it is a carboxylic acid and a weak acid is utterly uncontroversial and unlikely to be challenged by anyone. Nevertheless, I also agree with DMacks that the pKa value confirms that it is a weak acid, and the form of words proposed and implemented from your discussion is accurate. Sorry for the delay in responding. EdChem (talk) 12:04, 20 July 2018 (UTC)
- No problem. It probably wouldn't be challenged, but article content in FAs needs to be verifiable. Seppi333 (Insert 2¢) 02:04, 21 July 2018 (UTC)
Long and repetitive introduction
Most of the content in the introduction is repeated literally word-for-word in the article body. In my revisions I removed all the duplicate info], repeated word for word in the body. I read other bioactive chemical pages and they don’t have the extreme repetitiveness of this article. The intro almost reads as an advertisement for HMB, let your customers read the article first. Anyway, I saw no reason given for undoing my copyedits, why were they removed? Dogshu (talk) 13:04, 29 August 2018 (UTC)
- @Dogshu: sorry for the delayed reply. The lead/intro section of an article is supposed to summarize the body of the article. Article leads should not contain any information which is not stated in the body, with exception for very basic facts about the article topic (e.g., synonyms, topical scope, etc.). Consequently, a well-written article lead should be fairly redundant with the body and adhere to WP:SUMMARYSTYLE. Seppi333 (Insert 2¢) 23:05, 30 August 2018 (UTC)
- @Seppi333:Yes it should be redundant. However entire sections of the intro are repeated verbatim in the body. My revision preserved the references to the content without repeating whole sections verbatim. I know I’m a newb though, and accept your decision, unless anyone else dissents. I am curious however if those that want all the information up front in the intro, making it sound like a miracle drug, have ties to the food supplement industry and are thus biased. Dogshu (talk) 02:18, 31 August 2018 (UTC)
- @Dogshu: Hmm. Well, the sentences in the lead don't necessarily have to differ from the body, but I suppose "good writing" entails at least a little variation when assertions are restated. This reminds me of a general question that I asked about redundant article content when I was a new editor (User talk:Seppi333/Archive 1#Content Redundancy Q), although IIRC the issue that led to me asking that had more to do with restated assertions within different sections of the article's body. Anyway, when I wrote this article, I basically just either summarized several paragraphs of text from the body in 1-2 sentences or copy/pasted the key points and contextual facts from every section of the body. That said, if you want to superficially rephrase the duplicate sentences in the lead section so that they're not verbatim duplicates of the text in the article's body, that would be completely fine with me.
- As for the efficacy of this drug, this article's lead currently states a direction of an effect without quantifying how large the effects are (AKA the magnitude or effect size); more clinical research needs to be conducted in resistance-trained individuals (i.e., people who perform strength/resistance training on a regular basis), endurance athletes, and untrained athletes before a meta-analysis can be performed to determine the effect size of HMB supplementation for each population group. Based upon current evidence, the effect of HMB on muscle mass tends to be smaller in individuals who perform strength training on a regular basis relative to untrained groups. That said, the effect size in older adults has been estimated by a meta-analysis of clinical trials and is included in a note within the body of this article (see beta-Hydroxy beta-methylbutyric acid#cite note-36), but this content isn't covered in the article's lead section; based upon the estimated standard mean difference and the weighted average duration listed in that note, daily HMB supplementation in older adults appears to produce an annual increase in skeletal muscle mass by ~1.5 pounds on average. That's a rather notable fact since sedentary older adults lose muscle mass on an annual basis, and some lose much more. Seppi333 (Insert 2¢) 00:44, 2 September 2018 (UTC)
- Addendum: I included the note I mentioned above at the end of the corresponding sentence in the lead in this edit. Seppi333 (Insert 2¢) 00:48, 2 September 2018 (UTC)
- @Seppi333:Yes it should be redundant. However entire sections of the intro are repeated verbatim in the body. My revision preserved the references to the content without repeating whole sections verbatim. I know I’m a newb though, and accept your decision, unless anyone else dissents. I am curious however if those that want all the information up front in the intro, making it sound like a miracle drug, have ties to the food supplement industry and are thus biased. Dogshu (talk) 02:18, 31 August 2018 (UTC)
Updates - recent (post-FA) reviews and meta-analyses
From this search:
Meta-analyses from 2018
- PMID 29249685; meta-analysis: performance-enhancement literature High Priority Added
- PMID 29676656; meta-analysis + systematic review: healthy adults - presumably mostly athletes (effect on exercise-induced muscle damage) High Priority Added
Systematic reviews from 2018
- PMID 29300431 - systematic review: elderly/clinical High Priority
- PMID 29941852 - systematic review: clinical population - post-surgical recovery High Priority
Other reviews from 2017–2018
Add these when time permits: