Jump to content

Speciociliatine

From Wikipedia, the free encyclopedia

Speciociliatine
Legal status
Legal status
  • US: Unscheduled
Identifiers
  • methyl (E)-2-[(2S,3S,12bR)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyprop-2-enoate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC23H30N2O4
Molar mass398.503 g·mol−1
3D model (JSmol)
Melting point104 °C[1]
  • CC[C@@H]1CN2CCC3=C([C@H]2C[C@@H]1/C(=C\OC)/C(=O)OC)NC4=C3C(=CC=C4)OC
  • InChI=1S/C23H30N2O4/c1-5-14-12-25-10-9-15-21-18(7-6-8-20(21)28-3)24-22(15)19(25)11-16(14)17(13-27-2)23(26)29-4/h6-8,13-14,16,19,24H,5,9-12H2,1-4H3/b17-13+/t14-,16+,19-/m1/s1
  • Key:LELBFTMXCIIKKX-MYLQJJOTSA-N

Speciociliatine is a major alkaloid of the plant Mitragyna speciosa, commonly known as kratom. It is a stereoisomer of Mitragynine and constitutes 0.00156 - 2.9% of the dried leaf material.[2][3]

Pharmacology

[edit]

Pharmacodynamics

[edit]

Speciociliatine has found to be a ligand of the mu and kappa opioid receptors, however findings are varied as to whether it functions as an agonist or a competitive antagonist at those sites.[4][5]

Pharmacokinetics

[edit]

A preliminary pharmacokinetic analysis in male Sprague Dawley rats determined the elimination half-life of Speciociliatine to be 2.6 - 5 hours and the absolute bioavailability to be 20.7% (at an oral dose of 20 mg/kg).[6]

References

[edit]
  1. ^ "National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 15560576, Speciociliatine".
  2. ^ Manwill, P. K., Flores-Bocanegra, L., Khin, M., Raja, H. A., Cech, N. B., Oberlies, N. H., Todd, D. A. (2022), "Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products", Planta Medica, 88 (9/10), Georg Thieme Verlag KG: 838–857, doi:10.1055/a-1795-5876, PMC 9343938, PMID 35468648
  3. ^ Sharma, A., Kamble, S. H., León, F., Chear, N. J. ‐Y., King, T. I., Berthold, E. C., Ramanathan, S., McCurdy, C. R., Avery, B. A. (2019), "Simultaneous quantification of ten key Kratom alkaloids in Mitragyna speciosa leaf extracts and commercial products by ultra-performance liquid chromatography−tandem mass spectrometry", Drug Testing and Analysis, 11 (8), Wiley: 1162–1171, doi:10.1002/dta.2604, PMC 7927418, PMID 30997725
  4. ^ Obeng, S., Kamble, S. H., Reeves, M. E., Restrepo, L. F., Patel, A., Behnke, M., Chear, N. J.-Y., Ramanathan, S., Sharma, A., León, F., Hiranita, T., Avery, B. A., McMahon, L. R., McCurdy, C. R. (2019), "Investigation of the Adrenergic and Opioid Binding Affinities, Metabolic Stability, Plasma Protein Binding Properties, and Functional Effects of Selected Indole-Based Kratom Alkaloids", Journal of Medicinal Chemistry, 63 (1), American Chemical Society (ACS): 433–439, doi:10.1021/acs.jmedchem.9b01465, PMC 7676998, PMID 31834797
  5. ^ Kruegel, A. C., Gassaway, M. M., Kapoor, A., Váradi, A., Majumdar, S., Filizola, M., Javitch, J. A., Sames, D. (2016), "Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators", Journal of the American Chemical Society, 138 (21), American Chemical Society (ACS): 6754–6764, doi:10.1021/jacs.6b00360, PMC 5189718, PMID 27192616
  6. ^ Berthold, E. C., Kamble, S. H., Raju, K. S., King, T. I., Popa, R., Sharma, A., León, F., Avery, B. A., McMahon, L. R., McCurdy, C. R. (2021), "Preclinical pharmacokinetic study of speciociliatine, a kratom alkaloid, in rats using an UPLC-MS/MS method", Journal of Pharmaceutical and Biomedical Analysis, 194, Elsevier BV: 113778, doi:10.1016/j.jpba.2020.113778, PMID 33277117, S2CID 227296714