Jump to content

Solynta

From Wikipedia, the free encyclopedia
Solynta
Company typePrivate
IndustryBiotechnology
Founded2006
FounderHein Kruyt, Pim Lindhout, Theo Schotte, and Johan Trouw
Headquarters,
Websitewww.solynta.com

Solynta is a Dutch biotechnology company that specializes in hybrid potato breeding. It is headquartered in Wageningen, Gelderland, the Netherlands.

Overview

[edit]

Solynta was founded by Hein Kruyt,[1] Pim Lindhout, Theo Schotte and Johan Trouw[2] in 2006.[3] Solynta has been focusing on developing potato hybrids through breeding.

Technology

[edit]

Hybrid breeding allows a breeder to combine in an easy way favorable traits from one parental line A with other desired traits from parental line B in its F1 offspring. This requires potato plants which are self-compatible and diploid, that can be used to generate the parental lines. To this end, Solynta crossed in 2008 a diploid potato with Solanum chacoense to start hybrid breeding.[4]

The first step is to develop parental lines that are homozygous. Although potato is very heterozygous,[4] it is possible to generate homozygous potato lines.[5][6][7]

Self-compatible diploid potato was found by Hosaka and Hanneman in the Solanum chacoense used by Solynta.[8] The first results of the breeding efforts were published in 2011 by Lindhout et al.,[5] a few years later this potential of hybrid breeding in potato was acknowledged by the US scientific community.[9] Further tails of the breeding process, including the original donors have been described in Lindhout et al., 2018.[10] The mechanisms of self-compatibility in potato have recently been unraveled simultaneously by Eggers et al.[11] and Ma et al., identifying the Sli-gene.[12]

Meijer et al. (2018)[13] and Prinzenberg et al. (2018)[14] showed that using the potato breeding material of Solynta, fast and targeted progress on breeding for specific traits could be achieved. In 2017, Solynta showed in a program called HiSPoB[15] that it was able to introduce a double stack phytophthora resistance in their hybrid material, which was publicly demonstrated (Su et al. 2020).[16] With this demonstration the principle of marker-assisted breeding, known and applied in other major crops, was demonstrated for the first time for potato. Solynta's potato breeding techniques include F1 hybrid potato breeding.[17][5]

Research collaborations

[edit]

Solynta has participated in a number of scientific collaborations and networks, in order to gain experience with the technology and to allow public researchers to work with genetic material made available by Solynta.

  • SolAce: methods for improving agroecosystem and crop efficiency for water and nutrient use[18]
  • Protecta: pathogen-informed resistance to oomycete diseases in ecosystems, agriculture and aquaculture[19]
  • Sky High: vertical farming program[20]
  • Responsible Innovation in Dutch Potato Breeding (NWO Responsible Innovation)[21]
  • Holland Innovative Potato (HIP)[22]

For public research purposes, the diploid self-compatible line "Solyntus" was released to the scientific community in collaboration with Wageningen UR – Plant Breeding.[23] Genetic material from Solynta was used by groups in the UK[24] and Sweden[25] to perform research on fundamental aspects of potato biology. The collaborations have led to an acknowledgment by the public scientific community for the openness and transparency of Solynta.[26]

The Sli gene was recently cloned by Wageningen University and Solynta in 2021, which will allow for faster and more focused breeding.[27][28] It primarily focuses on Hybrid True Potato Seeds (HTPS) that are not genetically modified.[29][1] Using potato seeds, 25 grams of seeds can be utilized in place of 2500 kg of tubers as used in traditional potato planting.[30] This method of potato breeding received a U.S. patent in 2020.[31]

Solynta has worked on developing on a late blight-resistant potato variety[32] using cross-breeding.[33] Scientists at the company have also worked on published genome sequences of potatoes.[34]

Impact and further research

[edit]

Two patents have been granted on hybrid breeding technology, one in the US in 2020.[35] Solynta signed a collaboration with the largest potato starch processor, AVEBE in 2021. Their joint goal is to develop hybrid potato varieties with added value for processing starch and other ingredients, while maintaining a sustainable crop production.[36]

First variety registrations were obtained in Zimbabwe (2021) and Kenya (2023). A collaboration agreement with seed-treatment specialist Incotec was signed in 2022.

The case of hybrid potato breeding has led to a number of studies, initiated by Rathenau Institute (Beumer & Edelenbosch, 2019; Edelenbosch & Munnichs, 2020).[37][38]

Solynta's model of using and regulating ownership of newly developed technologies is discussed in Beumer et al.'s framework of Commons.[39] The framework states there is a diversity of genetic material available and accessible and supports a scientific basis for further development of the potato value chain.[40]

Potato hybrid breeding trials have been carried out in the DR Congo (in Ituri Province),[41] Rwanda,[42] and Mozambique (in Angónia District, Tete Province).[43] An early hybrid potato growing trial using diploid hybrids in East Africa showed promising yield and disease resistance.[44]

References

[edit]
  1. ^ Jump up to: a b "Solynta raises €21M to "unlock the true potential" of the humble potato; here's how". Silicon Canals. August 6, 2021.
  2. ^ Hopkins, Matt (May 16, 2022). "Solynta, Incotec Form Partnership to Optimize Performance of Hybrid True Potato Seeds".
  3. ^ Stokstad, Erik (February 8, 2019). "The new potato". Science. 363 (6427): 574–577. Bibcode:2019Sci...363..574S. doi:10.1126/science.363.6427.574. PMID 30733400. S2CID 73425570.
  4. ^ Jump up to: a b Zhou, Qian; Tang, Dié; Huang, Wu; Yang, Zhongmin; Zhang, Yu; Hamilton, John P.; Visser, Richard G. F.; Bachem, Christian W. B.; Robin Buell, C.; Zhang, Zhonghua; Zhang, Chunzhi; Huang, Sanwen (October 2020). "Haplotype-resolved genome analyses of a heterozygous diploid potato". Nature Genetics. 52 (10): 1018–1023. doi:10.1038/s41588-020-0699-x. PMC 7527274. PMID 32989320. S2CID 222167173.
  5. ^ Jump up to: a b c Lindhout, Pim; Meijer, Dennis; Schotte, Theo; Hutten, Ronald C. B.; Visser, Richard G. F.; van Eck, Herman J. (December 2011). "Towards F1 Hybrid Seed Potato Breeding". Potato Research. 54 (4): 301–312. doi:10.1007/s11540-011-9196-z. S2CID 39719359.
  6. ^ Leisner, Courtney P.; Hamilton, John P.; Crisovan, Emily; Manrique-Carpintero, Norma C.; Marand, Alexandre P.; Newton, Linsey; Pham, Gina M.; Jiang, Jiming; Douches, David S.; Jansky, Shelley H.; Buell, C. Robin (May 2018). "Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity". The Plant Journal. 94 (3): 562–570. doi:10.1111/tpj.13857. PMID 29405524. S2CID 4924888.
  7. ^ van Lieshout, Natascha; van der Burgt, Ate; de Vries, Michiel E.; ter Maat, Menno; Eickholt, David; Esselink, Danny; van Kaauwen, Martijn P. W.; Kodde, Linda P.; Visser, Richard G. F.; Lindhout, Pim; Finkers, Richard (October 2020). "Solyntus, the New Highly Contiguous Reference Genome for Potato ( Solanum tuberosum )". G3: Genes, Genomes, Genetics. 10 (10): 3489–3495. doi:10.1534/g3.120.401550. PMC 7534448. PMID 32759330. S2CID 221038196.
  8. ^ Hosaka, Kazuyoshi; E. Hanneman, Jr., Robert (1998). "Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers". Euphytica. 103 (2): 265–271. doi:10.1023/A:1018380725160. S2CID 29400272.
  9. ^ Jansky, Shelley H.; Charkowski, Amy O.; Douches, David S.; Gusmini, Gabe; Richael, Craig; Bethke, Paul C.; Spooner, David M.; Novy, Richard G.; De Jong, Hielke; De Jong, Walter S.; Bamberg, John B.; Thompson, A. L.; Bizimungu, Benoit; Holm, David G.; Brown, Chuck R.; Haynes, Kathleen G.; Sathuvalli, Vidyasagar R.; Veilleux, Richard E.; Miller, J. Creighton; Bradeen, Jim M.; Jiang, Jiming (July 2016). "Reinventing Potato as a Diploid Inbred Line-Based Crop". Crop Science. 56 (4): 1412–1422. doi:10.2135/cropsci2015.12.0740. hdl:10919/97862.
  10. ^ Lindhout, Pim; De Vries, Michiel; Ter Maat, Menno; Ying, Su; Viquez-Zamora, Marcela; Van Heusden, Sjaak (2018). "Hybrid potato breeding for improved varieties". Achieving sustainable cultivation of potatoes Volume 1. Burleigh Dodds Series in Agricultural Science. pp. 99–122. doi:10.19103/as.2016.0016.04. ISBN 978-1-78676-100-2. S2CID 188905534.
  11. ^ Eggers, Ernst-Jan; van der Burgt, Ate; van Heusden, Sjaak A. W.; de Vries, Michiel E.; Visser, Richard G. F.; Bachem, Christian W. B.; Lindhout, Pim (6 July 2021). "Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato". Nature Communications. 12 (1): 4141. Bibcode:2021NatCo..12.4141E. doi:10.1038/s41467-021-24267-6. PMC 8260583. PMID 34230471.
  12. ^ Ma, Ling; Zhang, Chunzhi; Zhang, Bo; Tang, Fei; Li, Futing; Liao, Qinggang; Tang, Die; Peng, Zhen; Jia, Yuxin; Gao, Meng; Guo, Han; Zhang, Jinzhe; Luo, Xuming; Yang, Huiqin; Gao, Dongli; Lucas, William J.; Li, Canhui; Huang, Sanwen; Shang, Yi (6 July 2021). "A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes". Nature Communications. 12 (1): 4142. Bibcode:2021NatCo..12.4142M. doi:10.1038/s41467-021-24266-7. PMC 8260799. PMID 34230469.
  13. ^ Meijer, D.; Viquez-Zamora, M.; van Eck, H. J.; Hutten, R. C. B.; Su, Y.; Rothengatter, R.; Visser, R. G. F.; Lindhout, W. H.; van Heusden, A. W. (July 2018). "QTL mapping in diploid potato by using selfed progenies of the cross S. tuberosum × S. chacoense". Euphytica. 214 (7): 121. doi:10.1007/s10681-018-2191-6. PMC 6434985. PMID 30996395.
  14. ^ Prinzenberg, Aina E.; Víquez-Zamora, Marcela; Harbinson, Jeremy; Lindhout, Pim; van Heusden, Sjaak (October 2018). "Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato". Physiologia Plantarum. 164 (2): 163–175. doi:10.1111/ppl.12689. PMID 29314007.
  15. ^ "H2020 – SME instrument". H2020 – SME instrument.
  16. ^ Su, Ying; Viquez-Zamora, Marcela; den Uil, Danielle; Sinnige, Jarno; Kruyt, Hein; Vossen, Jack; Lindhout, Pim; van Heusden, Sjaak (February 2020). "Introgression of Genes for Resistance against Phytophthora infestans in Diploid Potato". American Journal of Potato Research. 97 (1): 33–42. doi:10.1007/s12230-019-09741-8. S2CID 208650047.
  17. ^ "Solynta | PotatoPro". www.potatopro.com. October 16, 2013.
  18. ^ "SolACE". www.solace-eu.net.
  19. ^ "CORDIS | European Commission".
  20. ^ "SKY HIGH: Vertical farming, a revolution in plant production | NWO". www.nwo.nl. 28 October 2019.
  21. ^ "Responsible innovation in Dutch potato breeding | NWO". www.nwo.nl. September 2015.
  22. ^ "Holland Innovative Potato – Dé kraamkamer van vernieuwing in de aardappelketen".
  23. ^ "Solyntus genome sequence consortium". www.plantbreeding.wur.nl.
  24. ^ Witek, Kamil; Jupe, Florian; Witek, Agnieszka I; Baker, David; Clark, Matthew D; Jones, Jonathan D G (June 2016). "Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing" (PDF). Nature Biotechnology. 34 (6): 656–660. doi:10.1038/nbt.3540. PMID 27111721. S2CID 21764939.
  25. ^ Wang, Eu Sheng; Kieu, Nam Phuong; Lenman, Marit; Andreasson, Erik (June 6, 2020). "Tissue Culture and Refreshment Techniques for Improvement of Transformation in Local Tetraploid and Diploid Potato with Late Blight Resistance as an Example". Plants. 9 (6): 695. doi:10.3390/plants9060695. PMC 7356882. PMID 32486039.
  26. ^ Bradshaw, John E. (January 6, 2022). "Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops". Plants. 11 (9): 1121. doi:10.3390/plants11091121. PMC 9101707. PMID 35567122.
  27. ^ Eggers, Ernst-Jan; van der Burgt, Ate; van Heusden, Sjaak A. W.; de Vries, Michiel E.; Visser, Richard G. F.; Bachem, Christian W. B.; Lindhout, Pim (July 6, 2021). "Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato". Nature Communications. 12 (1): 4141. Bibcode:2021NatCo..12.4141E. doi:10.1038/s41467-021-24267-6. PMC 8260583. PMID 34230471.
  28. ^ Ma, Ling; Zhang, Chunzhi; Zhang, Bo; Tang, Fei; Li, Futing; Liao, Qinggang; Tang, Die; Peng, Zhen; Jia, Yuxin; Gao, Meng; Guo, Han; Zhang, Jinzhe; Luo, Xuming; Yang, Huiqin; Gao, Dongli; Lucas, William J.; Li, Canhui; Huang, Sanwen; Shang, Yi (July 6, 2021). "A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes". Nature Communications. 12 (1): 4142. Bibcode:2021NatCo..12.4142M. doi:10.1038/s41467-021-24266-7. PMC 8260799. PMID 34230469.
  29. ^ "First large-scale Solynta Hybrid seed potato trials highly successful | PotatoPro". www.potatopro.com. April 17, 2017.
  30. ^ "Solynta". www.innovationindustries.com.
  31. ^ Staff, Compiled by (January 13, 2020). "Solynta Granted U.S. Patent for Hybrid True Potato Seed Development". Seed World.
  32. ^ "Solynta develops a blight resistant potato variety (non-GMO) | PotatoPro". www.potatopro.com. August 22, 2017.
  33. ^ "Solynta's revolutionary hybrid breeding technology protects potato from late blight by multi-resistance | PotatoPro". www.potatopro.com. August 23, 2017.
  34. ^ "Complex potato genome further unveiled – Solynta". June 2019.
  35. ^ "Hybrid seed potato breeding".
  36. ^ "Royal Avebe and Solynta join forces: hybrid breeding in starch potato production". Avebe. April 15, 2021.
  37. ^ Beumer, Koen; Edelenbosch, Rosanne (May 2019). "Hybrid potato breeding: A framework for mapping contested socio-technical futures". Futures. 109: 227–239. doi:10.1016/j.futures.2019.01.004. hdl:1874/384722. S2CID 150069773.
  38. ^ Edelenbosch, R. & G. Munnichs (2020). De aardappel heeft de toekomst – Drie scenario's over de hybride aardappel en de wereldvoedselvoorziening. Den Haag: Rathenau Instituut.
  39. ^ Beumer, Koen; Stemerding, Dirk; Swart, Jac. A. A. (June 2021). "Innovation and the commons: lessons from the governance of genetic resources in potato breeding". Agriculture and Human Values. 38 (2): 525–539. doi:10.1007/s10460-020-10169-8. S2CID 225113969.
  40. ^ Beumer, Koen; Stemerding, Dirk (23 November 2021). "A breeding consortium to realize the potential of hybrid diploid potato for food security". Nature Plants. 7 (12): 1530–1532. Bibcode:2021NatPl...7.1530B. doi:10.1038/s41477-021-01035-4. hdl:1874/416028. PMID 34815537. S2CID 244529204.
  41. ^ "Potatoes grown from seeds yield big harvests". Appropriate Technology. Vol. 44, no. 2. June 2017. pp. 11–12. ProQuest 2007481934.[unreliable source?]
  42. ^ "The New Times: Rwanda pilots 'revolutionary' potato seeds – Solynta". 3 January 2020.
  43. ^ "first successful Hybrid true potato seed (HTPS) trial of solynta and solidaridad in mozambique shows great potential – Solynta". 22 April 2020.
  44. ^ de Vries, Michiel; ter Maat, Menno; Lindhout, Pim (2016). "The potential of hybrid potato for East-Africa". Open Agriculture. 1 (1): 151–156. doi:10.1515/opag-2016-0020. S2CID 4567960.
[edit]