Portal talk:Mathematics/Did you know/70
Appearance
I believe that this item is incorrect as stated.
Here are the Wolfram Mathematica 12 produced factoring with the number repeated as the sole factor indicating that the number is prime.
Number | Factoring |
---|---|
253931039382791 | Prime |
253931039382801 | {3, 1}, {11, 1}, {97, 2}, {817821233, 1} |
253931039382811 | {7, 1}, {264283, 1}, {137261431, 1} |
253931039382821 | {1049, 1}, {242069627629, 1} |
253931039382831 | {3, 1}, {29, 1}, {239, 1}, {659, 1}, {18531613, 1} |
253931039382841 | {23, 1}, {207169, 1}, {53292143, 1} |
253931039382851 | Prime |
253931039382861 | {3, 2}, {101, 1}, {599, 1}, {1439, 1}, {324089, 1} |
253931039382871 | Prime |
253931039382881 | {7, 1}, {36275862768983, 1} |
253931039382891 | {3, 1}, {13, 1}, {31, 1}, {210033944899, 1} |
253931039382901 | {83, 1}, {3059410113047, 1} |
253931039382911 | {11, 1}, {19, 1}, {37, 1}, {73, 1}, {139, 1}, {1373, 1}, {2357, 1} |
253931039382921 | {3, 1}, {84643679794307, 1} |
253931039382931 | Prime |
253931039382941 | {3, 2}, {7, 1}, {17, 1}, {227, 1}, {2557,1}, {408479, 1}}}, |
253931039382961 | {11689, 1}, {21723931849, 1} |
253931039382971 | {61, 1}, {107, 1}, {38904709573, 1} |
--NumberRI (talk) 23:18, 6 May 2019 (UTC) --NumberRI (talk) 23:37, 6 May 2019 (UTC)
- As explained elsewhere, you misunderstood. --S Philbrick(Talk) 20:38, 7 May 2019 (UTC)