Jump to content

Peter G. Casazza

From Wikipedia, the free encyclopedia
Peter G. Casazza discussing the core structures of Grassmannian frames in a classroom he and his wife, Janet Tremain, installed in the basement of their home. Photo taken May 15, 2017.
Peter G. Casazza along with some of his fellow coauthors during a math workshop in Hong Kong. From left to right: Bernhard G. Bodmann, John I. Haas IV, Peter G. Casazza, and Janet Tremain (his wife).

Peter G. Casazza, born June 28, 1945, in Albany, New York, is an American mathematician, presently working at the University of Missouri.[1] He began his career as a Banach space theorist,[2][3][4] but he is perhaps most well known for his role in the development of frame (linear algebra) theory as a popular discipline of mathematical research.[5][6][7][8][9]

Casazza has over 100 publications,[10] several of which are coauthored with his wife, Janet Tremain.[11][12]

He is an active mathematical researcher and currently runs the Frame Research Center in Columbia, Missouri.

References

[edit]
  1. ^ Casazza, Peter. "Departmental Webpage".
  2. ^ Casazza, Peter G. (November 1992). "The Norms of Projections Onto Ideals in the Disk Algebra". Bulletin of the London Mathematical Society. 24 (6): 552–558. doi:10.1112/blms/24.6.552.
  3. ^ Casazza, Peter (February 1972). "Complete Bases and Normal Structure in Banach Spaces". Proceedings of the American Mathematical Society. 36 (2): 443–447. doi:10.2307/2039175. JSTOR 2039175.
  4. ^ Casazza, P. G.; Jarchow, H. (14 November 2011). "Self-induced compactness in Banach spaces". Proceedings of the Royal Society of Edinburgh, Section A. 126 (2): 355–362. arXiv:math/9403210. doi:10.1017/S0308210500022770. S2CID 119164575.
  5. ^ Peter G. Casazza; Gitta Kutyniok, eds. (2013). Finite frames : theory and applications. Berlin: Birkhäuser. ISBN 978-0-8176-8372-6.
  6. ^ Casazza, Peter G.; Pinkham, Eric; Tuomanen, Brian (September 2016). "Riesz outer product Hilbert space frames: Quantitative bounds, topological properties, and full geometric characterization". Journal of Mathematical Analysis and Applications. 441 (1): 475–498. arXiv:1410.7755. doi:10.1016/j.jmaa.2016.04.001. S2CID 14173332.
  7. ^ Bodmann, Bernhard G.; Casazza, Peter G.; Paulsen, Vern I.; Speegle, Darrin (1 July 2012). "Spanning and independence properties of frame partitions". Proceedings of the American Mathematical Society. 140 (7): 2193–2207. arXiv:1004.2446. doi:10.1090/S0002-9939-2011-11072-4. S2CID 33897848.
  8. ^ Bodmann, Bernhard G.; Casazza, Peter G.; Kutyniok, Gitta (May 2011). "A quantitative notion of redundancy for finite frames". Applied and Computational Harmonic Analysis. 30 (3): 348–362. arXiv:0910.5904. doi:10.1016/j.acha.2010.09.004. S2CID 15700141.
  9. ^ Casazza, P. G.; Tremain, J. C. (3 February 2006). "The Kadison-Singer Problem in mathematics and engineering". Proceedings of the National Academy of Sciences. 103 (7): 2032–2039. arXiv:math/0510024. Bibcode:2006PNAS..103.2032C. doi:10.1073/pnas.0507888103. PMC 1413700. PMID 16461465.
  10. ^ "Peter G. Casazza (University of Missouri, Columbia) on ResearchGate - Expertise: Applied Mathematics, Analysis, Statistics". www.researchgate.net.
  11. ^ "Peter G. Casazza (University of Missouri, Columbia) on ResearchGate - Expertise: Applied Mathematics, Analysis, Statistics". www.researchgate.net.
  12. ^ Casazza, P. G.; Tremain, J. C. (3 February 2006). "The Kadison-Singer Problem in mathematics and engineering". Proceedings of the National Academy of Sciences. 103 (7): 2032–2039. arXiv:math/0510024. Bibcode:2006PNAS..103.2032C. doi:10.1073/pnas.0507888103. PMC 1413700. PMID 16461465.