Jump to content

Pentellated 7-orthoplexes

From Wikipedia, the free encyclopedia
(Redirected from Pentiruncinated 7-orthoplex)
Orthogonal projections in B6 Coxeter plane

7-orthoplex

Pentellated 7-orthoplex

Pentitruncated 7-orthoplex

Penticantellated 7-orthoplex

Penticantitruncated 7-orthoplex

Pentiruncinated 7-orthoplex

Pentiruncitruncated 7-orthoplex

Pentiruncicantellated 7-orthoplex

Pentiruncicantitruncated 7-orthoplex

Pentistericated 7-orthoplex

Pentisteritruncated 7-orthoplex

Pentistericantellated 7-orthoplex

Pentistericantitruncated 7-orthoplex

Pentisteriruncinated 7-orthoplex

Pentisteriruncitruncated 7-orthoplex

Pentisteriruncicantellated 7-orthoplex

Pentisteriruncicantitruncated 7-orthoplex

In seven-dimensional geometry, a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations (pentellation) of the regular 7-orthoplex.

There are 32 unique pentellations of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and sterications. 16 are more simply constructed relative to the 7-cube.

These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.

Pentellated 7-orthoplex

[edit]
Pentellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 2688
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Small terated hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)[1]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,1,1,1,2)2

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentitruncated 7-orthoplex

[edit]
pentitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 87360
Vertices 13440
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)[2]

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,1,1,2,3).

Penticantellated 7-orthoplex

[edit]
Penticantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 188160
Vertices 26880
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)[3]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,1,2,2,3)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Penticantitruncated 7-orthoplex

[edit]
penticantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 295680
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)[4]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,1,2,3,4)2.

orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncinated 7-orthoplex

[edit]
pentiruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 174720
Vertices 26880
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)[5]

Coordinates

[edit]

The coordinates are permutations of (0,1,1,2,2,2,3)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncitruncated 7-orthoplex

[edit]
pentiruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 443520
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)[6]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,2,2,3,4)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncicantellated 7-orthoplex

[edit]
pentiruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 403200
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)[7]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,2,3,3,4)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 7-orthoplex

[edit]
pentiruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 725760
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)[8]

Coordinates

[edit]

Coordinates are permutations of (0,1,1,2,3,4,5)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentistericated 7-orthoplex

[edit]
pentistericated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 67200
Vertices 13440
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)[9]

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,2,2,2,3)2.

Pentisteritruncated 7-orthoplex

[edit]
pentisteritruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 241920
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)[10]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,2,2,3,4)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentistericantellated 7-orthoplex

[edit]
pentistericantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 403200
Vertices 80640
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)[11]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,2,3,3,4)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentistericantitruncated 7-orthoplex

[edit]
pentistericantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)[12]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,2,3,4,5)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncinated 7-orthoplex

[edit]
Pentisteriruncinated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,3,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 241920
Vertices 53760
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Bipenticantitruncated 7-orthoplex as t1,2,3,6{35,4}
  • Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)[13]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,3,3,3,4)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncitruncated 7-orthoplex

[edit]
pentisteriruncitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,3,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)[14]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,3,3,4,5)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncicantellated 7-orthoplex

[edit]
pentisteriruncicantellated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,2,3,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 645120
Vertices 161280
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6{35,4}
  • Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)[15]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,3,4,4,5)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Pentisteriruncicantitruncated 7-orthoplex

[edit]
pentisteriruncicantitruncated 7-orthoplex
Type uniform 7-polytope
Schläfli symbol t0,1,2,3,4,5{35,4}
Coxeter diagram
6-faces
5-faces
4-faces
Cells
Faces
Edges 1128960
Vertices 322560
Vertex figure
Coxeter groups B7, [4,35]
Properties convex

Alternate names

[edit]
  • Great terated hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)[16]

Coordinates

[edit]

Coordinates are permutations of (0,1,2,3,4,5,6)2.

Images

[edit]
orthographic projections
Coxeter plane B7 / A6 B6 / D7 B5 / D6 / A4
Graph too complex
Dihedral symmetry [14] [12] [10]
Coxeter plane B4 / D5 B3 / D4 / A2 B2 / D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Notes

[edit]
  1. ^ Klitzing, (x3o3o3o3o3x4o - )
  2. ^ Klitzing, (x3x3o3o3o3x4o - )
  3. ^ Klitzing, (x3o3x3o3o3x4o - )
  4. ^ Klitzing, (x3x3x3oxo3x4o - )
  5. ^ Klitzing, (x3o3o3x3o3x4o - )
  6. ^ Klitzing, (x3x3o3x3o3x4o - )
  7. ^ Klitzing, (x3o3x3x3o3x4o - )
  8. ^ Klitzing, (x3x3x3x3o3x4o - )
  9. ^ Klitzing, (x3o3o3o3x3x4o - )
  10. ^ Klitzing, (x3x3o3o3x3x4o - )
  11. ^ Klitzing, (x3o3x3o3x3x4o - )
  12. ^ Klitzing, (x3x3x3o3x3x4o - )
  13. ^ Klitzing, (x3o3o3x3x3x4o - )
  14. ^ Klitzing, (x3x3o3x3x3x4o - )
  15. ^ Klitzing, (x3o3x3x3x3x4o - )
  16. ^ Klitzing, (x3x3x3x3x3x4o - )

References

[edit]
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)".
[edit]
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds