PANX1
Pannexin 1 is a protein in humans that is encoded by the PANX1 gene.[5]
The protein encoded by this gene belongs to the innexin family. Innexin family members are the structural components of gap junctions. This protein and pannexin 2 are abundantly expressed in central nerve system (CNS) and are coexpressed in various neuronal populations. Studies in Xenopus oocytes suggest that this protein alone and in combination with pannexin 2 may form cell type-specific gap junctions with distinct properties.[5]
Clinical relevance
[edit]Truncating mutations in this gene have been shown to promote breast cancer metastasis to the lungs by allowing cancer cells to survive mechanical stretch in the microcirculation.[6]
Disruptions of this gene have been associated to melanoma tumor progression.[7]
Pannexin 1 is also an important component of membrane channels involved in the formation of thin plasma membrane extensions called apoptopodia and beaded apoptopodia during apoptosis.[8][9]
References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000110218 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000031934 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b "Entrez Gene: Pannexin 1". Retrieved 2012-04-11.
- ^ Furlow PW, Zhang S, Soong TD, Halberg N, Goodarzi H, Mangrum C, Wu YG, Elemento O, Tavazoie SF (July 2015). "Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival". Nature Cell Biology. 17 (7): 943–952. doi:10.1038/ncb3194. PMC 5310712. PMID 26098574.
- ^ Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD, Laird DW (Aug 2012). "Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype". The Journal of Biological Chemistry. 287 (34): 29184–93. doi:10.1074/jbc.M112.377176. PMC 3436541. PMID 22753409.
- ^ Poon IK, Chiu YH, Armstrong AJ, Kinchen JM, Juncadella IJ, Bayliss DA, Ravichandran KS (2014). "Unexpected link between an antibiotic, pannexin channels and apoptosis". Nature. 507 (7492): 329–34. Bibcode:2014Natur.507..329P. doi:10.1038/nature13147. PMC 4078991. PMID 24646995.
- ^ Atkin-Smith GK, Tixeira R, Paone S, Mathivanan S, Collins C, Liem M, Goodall KJ, Ravichandran KS, Hulett MD, Poon IK (2015). "A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure". Nat Commun. 6: 7439. Bibcode:2015NatCo...6.7439A. doi:10.1038/ncomms8439. PMC 4490561. PMID 26074490.
Further reading
[edit]- Pelegrin P, Surprenant A (Nov 2006). "Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor". The EMBO Journal. 25 (21): 5071–82. doi:10.1038/sj.emboj.7601378. PMC 1630421. PMID 17036048.
- Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (Nov 2003). "Pannexins, a family of gap junction proteins expressed in brain". Proceedings of the National Academy of Sciences of the United States of America. 100 (23): 13644–9. Bibcode:2003PNAS..10013644B. doi:10.1073/pnas.2233464100. PMC 263867. PMID 14597722.
- Reyes JP, Hernández-Carballo CY, Pérez-Flores G, Pérez-Cornejo P, Arreola J (Feb 2009). "Lack of coupling between membrane stretching and pannexin-1 hemichannels". Biochemical and Biophysical Research Communications. 380 (1): 50–3. doi:10.1016/j.bbrc.2009.01.021. PMC 2670310. PMID 19150332.
- Orloff M, Peterson C, He X, Ganapathi S, Heald B, Yang YR, Bebek G, Romigh T, Song JH, Wu W, David S, Cheng Y, Meltzer SJ, Eng C (Jul 2011). "Germline mutations in MSR1, ASCC1, and CTHRC1 in patients with Barrett esophagus and esophageal adenocarcinoma". JAMA. 306 (4): 410–9. doi:10.1001/jama.2011.1029. PMC 3574553. PMID 21791690.
- Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J, Dahl G, Steinem C, Sosinsky GE (Aug 2010). "Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other". The Journal of Biological Chemistry. 285 (32): 24420–31. doi:10.1074/jbc.M110.115444. PMC 2915678. PMID 20516070.
- Woehrle T, Yip L, Elkhal A, Sumi Y, Chen Y, Yao Y, Insel PA, Junger WG (Nov 2010). "Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse". Blood. 116 (18): 3475–84. doi:10.1182/blood-2010-04-277707. PMC 2981474. PMID 20660288.
- Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (Oct 2007). "Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane". The Journal of Biological Chemistry. 282 (43): 31733–43. doi:10.1074/jbc.M702422200. PMID 17715132.
- Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (Apr 2004). "The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins". Genomics. 83 (4): 706–16. doi:10.1016/j.ygeno.2003.09.025. PMID 15028292.
- Bhalla-Gehi R, Penuela S, Churko JM, Shao Q, Laird DW (Mar 2010). "Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions". The Journal of Biological Chemistry. 285 (12): 9147–60. doi:10.1074/jbc.M109.082008. PMC 2838334. PMID 20086016.