Jump to content

p-Laplacian

From Wikipedia, the free encyclopedia

In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator, where is allowed to range over . It is written as

Where the is defined as

In the special case when , this operator reduces to the usual Laplacian.[1] In general solutions of equations involving the p-Laplacian do not have second order derivatives in classical sense, thus solutions to these equations have to be understood as weak solutions. For example, we say that a function u belonging to the Sobolev space is a weak solution of

if for every test function we have

where denotes the standard scalar product.

Energy formulation

[edit]

The weak solution of the p-Laplace equation with Dirichlet boundary conditions

in an open bounded set is the minimizer of the energy functional

among all functions in the Sobolev space satisfying the boundary conditions in the sense that (when has a smooth boundary, this is equivalent to require that functions coincide with the boundary datum in trace sense[1]). In the particular case and is a ball of radius 1, the weak solution of the problem above can be explicitly computed and is given by

where is a suitable constant depending on the dimension and on only. Observe that for the solution is not twice differentiable in classical sense.

See also

[edit]

Notes

[edit]
  1. ^ a b Evans, pp 356.

Sources

[edit]
  • Evans, Lawrence C. (1982). "A New Proof of Local Regularity for Solutions of Certain Degenerate Elliptic P.D.E." Journal of Differential Equations. 45: 356–373. doi:10.1016/0022-0396(82)90033-x. MR 0672713.
  • Lewis, John L. (1977). "Capacitary functions in convex rings". Archive for Rational Mechanics and Analysis. 66 (3): 201–224. Bibcode:1977ArRMA..66..201L. doi:10.1007/bf00250671. MR 0477094. S2CID 120469946.

Further reading

[edit]