Jump to content

Normally flat ring

From Wikipedia, the free encyclopedia

In algebraic geometry, a normally flat ring along a proper ideal I is a local ring A such that is flat over for each integer .

The notion was introduced by Hironaka in his proof of the resolution of singularities as a refinement of equimultiplicity and was later generalized by Alexander Grothendieck and others.

References

[edit]
  • Herrmann, M., S. Ikeda, and U. Orbanz: Equimultiplicity and Blowing Up. An Algebraic Study with an Appendix by B. Moonen. Springer Verlag, Berlin Heidelberg New-York, 1988.